
The Linux
Concept Journey

version 3.0
September-2023

By Dr. Shlomi Boutnaru

Created using Craiyon, AI Image Generator

https://www.craiyon.com/

Introduction 3
The Auxiliary Vector (AUXV) 4
command not found 5
Out-of-Memory Killer (OOM killer) 6
Why doesn’t “ltrace” work on new versions of Ubuntu? 7
vDSO (Virtual Dynamic Shared Object) 8
Calling syscalls from Python 10
Syscalls’ Naming Rule: What if a syscall’s name starts with “f”? 11
Syscalls’ Naming Rule: What if a syscall’s name starts with “l”? 12
RCU (Read Copy Update) 13
cgroups (Control Groups) 15
Package Managers 16
What is an ELF (Executable and Linkable Format) ? 17
The ELF (Executable and Linkable Format) Header 18
File System Hierarchy in Linux 19
/boot/config-$(uname-r) 21
/proc/config.gz 22
What is an inode? 23
Why is removing a file not dependent on the file’s permissions? 24
VFS (Virtual File System) 25
tmpfs (Temporary Filesystem) 26
ramfs (Random Access Memory Filesystem) 27
Buddy Memory Allocation 28

Introduction
When starting to learn Linux I believe that they are basic concepts that everyone needs to know
about. Because of that I have decided to write a series of short writeups aimed at providing the
basic vocabulary and understanding for achieving that.

Overall, I wanted to create something that will improve the overall knowledge of Linux in
writeups that can be read in 1-3 mins. I hope you are going to enjoy the ride.

Lastly, you can follow me on twitter - @boutnaru (https://twitter.com/boutnaru). Also, you can
read my other writeups on medium - https://medium.com/@boutnaru.

Lets GO!!!!!!

https://twitter.com/boutnaru
https://medium.com/@boutnaru

The Auxiliary Vector (AUXV)
There are specific OS variables that a program would probably want to query such as the size of
a page (part of memory management - for a future writeup). So how can it be done?

When the OS executes a program it exposes information about the environment in a key-value
data store called “auxiliary vector” (in short auxv/AUXV). If we want to check which keys are
available we can go over1 (on older versions it was part of elf.h) and look for all the defines that
start with “AT_”.

Among the information that is included in AUXV we can find: the effective uid of the program,
the real uid of the program, the system page size, number of program headers (of the ELF - more
on that in the future), minimal stack size for signal delivery (and there is more).

If we want to see all the info of AUXV while running a program we can set the
LD_SHOW_AUXV environment variable to 1 and execute the requested program (see the
screenshot below, it was taken from JSLinux running Fedora 33 based on a riscv64 CPU2. We
can see that the name of the variable starts with “LD_”, it is because it is used/parsed by the
dynamic linker/loader (aka ld.so).

Thus, if we statically link our program (like using the -static flag on gcc) setting the variable
won’t print the values of AUXV. Anyhow, we can also access the values in AUXV using the
“unsigned long getauxval(unsigned long type)” library function3. A nice fact is that the auxiliary
vector is located next to the environment variables check the following illustration4.

4 https://static.lwn.net/images/2012/auxvec.png
3 https://man7.org/linux/man-pages/man3/getauxval.3.html
2 https://bellard.org/jslinux/
1 https://elixir.bootlin.com/linux/latest/source/include/uapi/linux/auxvec.h#L10

https://static.lwn.net/images/2012/auxvec.png
https://man7.org/linux/man-pages/man3/getauxval.3.html
https://bellard.org/jslinux/
https://elixir.bootlin.com/linux/latest/source/include/uapi/linux/auxvec.h#L10

command not found
Have you ever asked yourself what happens when you see “command not found” on bash? This
writeup is not going to talk about that and not about the flow which determines if a command is
found or not (that is a topic for a different write up ;-).

I am going to focus my discussion on what happens in an environment based on bash + Ubuntu
(version 22.04). I guess you at least once wrote “sl” instead of “ls” and you got a message
“Command 'sl' not found, but can be installed with: sudo apt install sl” - how did bash know that
there is such a package that could be installed? - as shown in the screenshot below

Overall, the magic happens with the python script “/usr/lib/command-not-found” which is
executed when a bash does not find a command - as shown in the screenshot below. This feature
is based on an sqlite database that has a connection between command and packages, it is sorted
in “/var/lib/command-not-found/commands.db”.

Lastly, there is a nice website https://command-not-found.com/ which allows you to search for a
command and get a list of different ways of installing it (for different Linux
distributions/Windows/MacOS/Docker/etc).

https://command-not-found.com/

Out-of-Memory Killer (OOM killer)
The Linux kernel has a mechanism called “out-of-memory killer” (aka OOM killer) which is
used to recover memory on a system. The OOM killer allows killing a single task (called also
oom victim) while that task will terminate in a reasonable time and thus free up memory.

When OOM killer does its job we can find indications about that by searching the logs (like
/var/log/messages and grepping for “Killed”). If you want to configure the “OOM killer”5.

It is important to understand that the OOM killer chooses between processes based on the
“oom_score”. If you want to see the value for a specific process we can just read
“/proc/[PID]/oom_score” - as shown in the screenshot below. If we want to alter the score we
can do it using “/proc/[PID]/oom_score_adj” - as shown also in the screenshot below. The valid
range is from 0 (never kill) to 1000 (always kill), the lower the value is the lower is the
probability the process will be killed6.

6 https://man7.org/linux/man-pages/man5/proc.5.html
5 https://www.oracle.com/technical-resources/articles/it-infrastructure/dev-oom-killer.html

https://man7.org/linux/man-pages/man5/proc.5.html
https://www.oracle.com/technical-resources/articles/it-infrastructure/dev-oom-killer.html

Why doesn’t “ltrace” work on new versions of
Ubuntu?
Many folks have asked me about that, so I have decided to write a short answer about it. Two
well known command line tools on Linux which can help with dynamic analysis are “strace” and
“ltrace”. “strace” allows tracing of system calls (“man 2 syscalls”) and signals (“man 7 signal”).
I am not going to focus on “strace” in this writeup, you can read more about it using “man
strace”. On the other hand, “ltrace” allows the tracing of dynamic library calls and signals
received by the traced process (“man 1 ltrace”). Moreover, it can also trace syscalls (like
“strace”) if you are using the “-S” flag.

If you have tried using “ltrace” in the new versions of Ubuntu you probably saw that the library
calls are not shown (you can verify it using “ltrace `which ls`”). In order to demonstrate that I
have created a small c program - as you can see in the screenshot below (“code.c”).

First, if we compile “code.c” and run it using “ltrace” we don’t get any information about a
library call (see in the screenshot below). Second, if we compile “code.c” with “-z lazy” we can
see when running the executable with “ltrace” we do get information about the library functions.
So what is the difference between the two?
“ltrace” (and “strace”) works by inserting a breakpoint7 in the PLT for the relevant symbol (that
is library function) we want to trace. So because by default the binaries are not compiled with
“lazy loading” of symbols they are resolved when the application starts and thus the breakpoints
set by “ltrace” are not triggered (and we don’t see any library calls in the output - as shown in the
screenshot below). Also, you can read more about the internals of “ltrace” here -
https://www.kernel.org/doc/ols/2007/ols2007v1-pages-41-52.pdf

7https://medium.com/@boutnaru/have-you-ever-asked-yourself-how-breakpoints-work-c72dd8619538

https://www.kernel.org/doc/ols/2007/ols2007v1-pages-41-52.pdf
https://medium.com/@boutnaru/have-you-ever-asked-yourself-how-breakpoints-work-c72dd8619538

vDSO (Virtual Dynamic Shared Object)
vDSO is a shared library that the kernel maps into the memory address space of every user-mode
application. It is not something that developers need to think about due to the fact it is used by
the C library8.

Overall, the reason for even having vDSO is the fact they are specific system calls that are used
frequently by user-mode applications.Due to the time/cost of the context-switching between
user-mode and kernel-mode in order to execute a syscall it might impact the overall performance
of an application.

Thus, vDSO provides “virtual syscalls” due to the need for optimizing system calls
implementations. The solution needed to not require libc to track CPU capabilities and or the
kernel version. Let us take for example x86, which has two ways of invoking a syscall: “int
0x80” or “sysenter”. The “sysenter” option is faster, due to the fact we don’t need to through the
IDT (Interrupt Descriptor Table). The problem is it is supported for CPUs newer than Pentium II
and for kernel versions greater than 2.69.

If you vDSO the implementation of the syscall interface is defined by the kernel in the following
manner. A set of CPU instructions formatted as ELF is mapped to the end of the user-mode
address space of all processes - as shown in the screenshot below. When libc needs to execute a
syscall it checks for the presence of vDSO and if it is relevant for the specific syscalls the
implementation in vDSO is going to be used - as shown in the screenshot below10.

Moreover, for the case of “virtual syscalls” (which are also part of vDSO) there is a frame
mapped as two different pages. One in kernel space which is static/”readable & writeable” and
the second one in user space which is marked as “read-only”. Two examples for that are the
syscalls “getpid()” (which is a static data example) and “gettimeofday()” (which is a dynamic
read-write example).

Also, as part of the kernel compilation process the vDSO code is compiled and linked. We can
most of the time find it using the following command “find arch/$ARCH/ -name '*vdso*.so*' -o
-name '*gate*.so*'”11

If we want to enable/disable vDSO we can set “/proc/sys/vm/vdso_enable” to 1/0 respectively12.
Lastly, a benchmark of different syscalls using different implementations is shown below.

12 https://talk.maemo.org/showthread.php?t=32696
11 https://manpages.ubuntu.com/manpages/xenial/man7/vdso.7.html
10 https://hackmd.io/@sysprog/linux-vdso
9 https://linux-kernel-labs.github.io/refs/heads/master/so2/lec2-syscalls.html
8 https://man7.org/linux/man-pages/man7/vdso.7.html

https://talk.maemo.org/showthread.php?t=32696
https://manpages.ubuntu.com/manpages/xenial/man7/vdso.7.html
https://hackmd.io/@sysprog/linux-vdso
https://linux-kernel-labs.github.io/refs/heads/master/so2/lec2-syscalls.html
https://man7.org/linux/man-pages/man7/vdso.7.html

https://www.slideshare.net/vh21/twlkhlinuxvsyscallandvdso

Calling syscalls from Python
Have you ever wanted a quick way to call a syscall (even if it is not exposed by libc)? There is a
quick way of doing that using “ctypes” in Python.

We can do it using the “syscall” exported function by libc (check out ‘man 2 syscall’13 for more
information). By calling that function we can call any syscall by passing its number and
parameters.

How do we know what the number of the syscall is? We can just check
https://filippo.io/linux-syscall-table/. What about the parameters? We can just go the the source
code which is pointed in any entry of a syscall (from the previous link) or we can just use man
(using the following pattern - ‘man 2 {NameOfSyscall}’, for example ‘man 2 getpid’).

Let us see an example, we will use the syscall getpid(), which does not get any arguments. Also,
the number of the syscall is 39 (on x64 Linux). You can check the screenshot below for the full
example. By the way, the example was made with
https://www.tutorialspoint.com/linux_terminal_online.php and online Linux terminal (kernel
3.10).

13 https://man7.org/linux/man-pages/man2/syscall.2.html

https://filippo.io/linux-syscall-table/
https://www.tutorialspoint.com/linux_terminal_online.php
https://man7.org/linux/man-pages/man2/syscall.2.html

Syscalls’ Naming Rule: What if a syscall’s name
starts with “f”?
Due to the large number of syscalls, there are some naming rules used in order to help in
understanding the operation performed by each of them. Let me go over some of them to give
more clarity.

If we have a syscall “<syscall_name>” so we could also have “f<syscall_name>” which means
that “f<syscall_name>” does the same operation as “<syscall_name>” but on a file referenced by
an fd (file descriptor). Some examples are (“chown”, “fchown”) and (“stat”, “fstat”). It is
important to understand that not every syscall which starts with “f” is part of such a pair, look at
“fsync()” as an example, however in this case the prefix still denoting the input of the syscall is
an fd. There are also examples in which the “f” prefix does not even refer to an fd like in the case
of “fork()”, it is just part of the syscall name.

Syscalls’ Naming Rule: What if a syscall’s name
starts with “l”?
I want to talk about those syscalls starting with “l”. If we have a syscall “<syscall_name>” so we
could also have “l<syscall_name>” which means that “l<syscall_name>” does the same
operation as “<syscall_name>” but in case of a symbolic link given as input the information is
retrieved about the link itself and not the file that the link refers to (for example “getxattr” and
“lgetxattr”. Moreover, not every syscall that starts with “l” falls in this category (think about
“listen”).

I think the last rule is the most confusing one because there are cases in which the “l” prefix is
not part of the original name of the syscall and is not relevant to any type of links. Let us look at
“lseek”, the reason for having the prefix is to emphasize that the offset is given as long as
opposed to the old “seek” syscall.

RCU (Read Copy Update)
Because there are multiple kernel threads (check it out using ‘ps -ef | grep rcu` - the output of the
command is included in the screenshot at the end of the post) which are based on RCU (and
other parts of the kernel) . I have decided to write a short explanation about it.

RCU is a sync mechanism which avoids the use of locking primitives in case multiple execution
flows that read and write specific elements. Those elements are most of the times linked by
pointers and are part of a specific data structure such as: has tables, binary trees, linked lists and
more.

The main idea behind RCU is to break down the update phase into two different steps:
“reclamation” and “removal” - let’s detail those phases. In the “removal” phase we
remove/unlink/delete a reference to an element in a data structure (can be also in case of
replacing an element with a new one). That phase can be done concurrently with other readers. It
is safe due to the fact that modern CPUs ensure that readers will see the new or the old data but
not partially updated. In the “reclamation” step the goal is to free the element from the data
structure during the removal process. Because of that this step can disrupt a reader which
references that specific element. Thus, this step must start only after all readers don’t hold a
reference to the element we want to remove.

Due to the nature of the two steps an updater can finish the “removal” step immediately and
defer the “reclamation” for the time all the active during this phase will complete (it can be done
in various ways such as blocking or registering a callback).

RCU is used in cases where read performance is crucial but can bear the tradeoff of using more
memory/space. Let’s go over a sequence of an update to a data structure in place using RCU.
First, we just create a new data structure. Second, we copy the old data structure into the new one
(don’t forget to save the pointer to the old data structure). Third, alter the new/copied data
structure. Fourth, update the global pointer to reference the new data structure. Fifth, sleep until
the kernel is sure they are no more readers using the old data structure (called also grace period,
in Linux we can use synchronize_rcu()14.

In summary, RCU is probably the most common “lock-free” technique for shared data structures.
It is lock-free for any number of readers. There are implementations also for single-writer and
even multi-writers (However, it is out of scope for now). Of course, RCU also has problems and
it is not designed for cases in which there are update-only scenarios (it is better for “mostly-read”
and “few-writes”) - More about that in a future writeup.

14 https://elixir.bootlin.com/linux/latest/source/kernel/rcu/tree.c#L3796

https://elixir.bootlin.com/linux/latest/source/kernel/rcu/tree.c#L3796

cgroups (Control Groups)
“Control Groups” (aka cgroups) is a Linux kernel feature that organizes processes into
hierarchical groups. Based on those groups we can limit and monitor different types of OS
resources. Among those resources are: disk I/O usage , network usage, memory usage, CPU
usage and more (https://man7.org/linux/man-pages/man7/cgroups.7.html). cgroups are one of the
building blocks used for creating containers (which include other stuff like namespaces,
capabilities and overlay filesystems).

The cgroups functionality has been merged into the Linux kernel since version 2.6.24 (released
in January 2008). Overall, cgroups provide the following features: resource limiting (as
explained above), prioritization (some process groups can have larger shares of resources),
control (freezing group of processes) and accounting15.

Moreover, there are two versions of cgroups. cgroups v1 was created by Paul Menage and Rohit
Seth. cgroups v2 was redesigned and rewritten by Tejun Heo16. The documentation for cgroups
v2 first appeared in the Linux kernel 4.5 release on March 201617.

I will write on the differences between the two versions and how to use them in the upcoming
writeups. A nice explanation regarding the concept of cgroups is shown in the image below18. By
the way, since kernel 4.19 OOM killer19 is aware of cgroups, which means the OS can kill a
cgroup as a single unit.

19 https://medium.com/@boutnaru/linux-out-of-memory-killer-oom-killer-bb2523da15fc
18 https://twitter.com/b0rk/status/1214341831049252870

17https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/diff/Documentation/cgroup-v2.txt?id=v4.5&id2=v
4.4

16 https://www.wikiwand.com/en/Cgroups
15 https://docs.kernel.org/admin-guide/cgroup-v1/cgroups.html

https://man7.org/linux/man-pages/man7/cgroups.7.html
https://medium.com/@boutnaru/linux-out-of-memory-killer-oom-killer-bb2523da15fc
https://twitter.com/b0rk/status/1214341831049252870
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/diff/Documentation/cgroup-v2.txt?id=v4.5&id2=v4.4
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/diff/Documentation/cgroup-v2.txt?id=v4.5&id2=v4.4
https://www.wikiwand.com/en/Cgroups
https://docs.kernel.org/admin-guide/cgroup-v1/cgroups.html

Package Managers
Package manager (aka “Package Management System”) is a set of software components which
are responsible for tracking what software artifacts (executables, scripts, shared libraries and
more). Packages are defined as a bundle of software artifacts that can be installed/removed as a
group (https://www.debian.org/doc/manuals/aptitude/pr01s02.en.html).

Thus, we can say that a package manager automates the installation/upgrading/removing of
computer programs from a system in a consistent manner. Moreover, package managers often
manage a database that includes the dependencies between the software artifacts and version
information in order to avoid conflicts (https://en.wikipedia.org/wiki/Package_manager).

Basically, there are different categories of package managers. The most common are: OS
package managers (like dpkg, apk, rpm, dnf, pacman and more - part are only frontends as we
will describe in the future) and runtime package managers focused on specific programming
languages (like maven, npm, PyPi, NuGet, Composer and more). Each package manager can also
have its own package file format (more on those in future writeups). Moreover, package
managers can have different front-ends CLI based or GUI based. Those package managers can
also support downloading software artifacts from different repositories
(https://devopedia.org/package-manager).

Overall, package managers can store different metadata for each package like: list of files,
version, authorship, licenses, targeted architecture and checksums. An overview of the package
management flow is shown in the diagram below
(https://developerexperience.io/articles/package-management).

What is an ELF (Executable and Linkable Format) ?
Every generic/standard operating system has a binary format for its user mode
executables/libraries, kernel code and more. Windows has PE (Portable Executable), OSX has
MachO and Linux has ELF. We are going to start with ELF (I promise to go over the others
also).

In Linux ELF among the others (but not limited to) for executables, kernel models, shared
libraries, core dumps and object files. Although, Linux does not mandates an extension for files
ELF files may have an extension of *.bin, *.elf, *.ko, *.so, *.mod, *.o, *.bin and more (it could
also be without an extension).

Moreover, today ELF is a common executable format for a variety of operating systems (and not
only Linux) like: QNX, Android, VxWorks, OpenBSD, NetBSD, FreeBSD, Fuchsia, BeOS.
Also, it is used in different platforms such as: Wii, Dreamcast and Playstation Portable.

ELF, might include 3 types of headers: ELF header (which is mandatory), program headers and
sections header . The appearance of the last two is based on the goal of the file: Is it for linking
only? Is it execution only? Both? (More on the difference between the two in the next chapters).
You can see the different layouts of ELF in the image below20.

In the next parts we will go over each header in more detail. By the way, a great source for more
information about ELF is man (“man 5 elf”).

20 https://i.stack.imgur.com/RMV0g.png

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://i.stack.imgur.com/RMV0g.png

The ELF (Executable and Linkable Format) Header
Now we are going to start with the ELF header. Total size of the header is 32 bytes. The header
starts with the magic “ELF” (0x7f 0x45 0x4c 0x46).

From the information contained in the header we can answer the following questions: Is the file
32 or 64 bit? Does the file store data in big or little endian? What is the ELF version? The type
of the file (executable,relocatable,shared library, etc)? What is the target CPU? What is the
address of the entry point? What is the size of the other headers (program/section)? - and more.

If we want to parse the header of a specific ELF file we can use the command “readelf” (we are
going to use it across all of the next parts to parse ELFs). In order to show the header of an ELF
file we can run “readelf -h {PATH_TO_ELF_FILE}”. In the image below we can see the ELF
header of “ls”. The image was taken from an online Arch Linux in a browser (copy.sh).

File System Hierarchy in Linux
As it turns out, there is a standard which is a reference that describes the conventions used by
Unix/Linux systems for the organization and layout of their filesystem. This standard was
created about 28 years ago (14 Feb 1994) and the last version (3.0) was published 7 years ago (3
Jun 2015). If you want to go over the specification for more details use the following link -
https://refspecs.linuxfoundation.org/fhs.shtml.

We are going to give a short description for each directory (a detailed description for some of
them will be in a dedicated write-up). We are going to list all the directories based on a
lexicographic order . All the examples that I am going to share are based on a VM running
Ubuntu 22.04.1 (below is a screenshot showing the directories for that VM). So let the fun begin
;-)

“/”, is the root directory of the entire system (the start of everything).
“/bin”, basic command mostly binaries (there are also scripts like zgrep) that are needed for
every user. Examples are: ls, ip and id.
“/boot”, contains files needed for boot like the kernel (vmlinuz), initrd and boot loader
configuration (like for grub). It may also contain metadata information about the kernel build
process like the config that was used (A detailed writeup is going to be shared about “/boot” in
the future) .
“/dev”, device files, for now you should think about it as an interface to a device driver which is
located on a filesystem (more on that in the future). Examples are: /dev/null, /dev/zero and
/dev/random.
“/etc”, contains configuration about the system or an installed application. Examples are:
/etc/adduser.conf (configuration file for adduser and addgroup commands) and /etc/sudo.conf.
“/home”, is the default location of the users’ home directory (it can be modified in /etc/passwd
per user). The directory might contain personal settings of the user, saved files by the user and
more. Example is .bash_history which is a hidden file that contains the historical commands
entered by the user (while using the bash shell).
“/lib”, contains libraries needed by binaries mostly (but not limited to) in “/bin” and “/sbin”. On
64 bit systems we can also have “lib64”.
“/media”, used as a mount point for removable media (like CD-ROMs and USBs).
“/mnt”, can be used for temporary mounted filesystems.
“/opt”, should include applications installed by the user as add-ons (in reality not all of the
addons are installed there).
“/lost+found”, this directory holds files that have been deleted or lost during a file operation. It
means that we have an inode for those files, however we don’t have a filename on disk for them
(think about cases of kernel panic or an unplanned shutdown). It is handled by tools like fsck -
more on that is a future writeup.

https://refspecs.linuxfoundation.org/fhs.shtml

“/proc”, it is a pseudo filesystem which enables retrieval of information about kernel data
structures from user space using file operations, for example “ps” reads information for there to
build the process list. Due to the fact it is a crucial part of Linux I am going to dedicate an entire
writeup about it.
“/root”, it's the default home directory of the root account.
“/run”, it is used for runtime data like: running daemons, logged users and more. It should be
erased/initialized every time on reboot/boot.
“/sbin”, similar to “/bin” but contains system binaries like: lsmod, init (in Ubuntu by the way it
is a link to systemd) and dhclient.
“/srv”,contains information which is published by the system to the outside world using
FTP/web server/other.
“/sys”, also a pseudo filesystem (similar to /proc) which exports information about hardware
devices, device drivers and kernel subsystems. It can also allow configuration of different
subsystems (like tracing for ftrace). I will cover it separately in more detail in the near future.
“/tmp”, the goal of the directory is to contain temporary files. Most of the time the content is not
saved between reboots. Remember that there is also “/var/tmp”.
“/usr”, it is referred to by multiple names “User Programs” or “User System Resources”. It has
several subdirectories containing binaries, libs, doc files and also can contain source code.
Historically, it was meant to be read-only and shared between FHS-compliant hosts
(https://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/usr.html). Due to the nature of its
complexity today and the large amount of files it contains we will go over it also in a different
writeup.
“/var”, aka variable files. It contains files which by design are going to change during the
normal operation of the system (think about spool files, logs and more). More on this directory in
the future.

It is important to note that those are not all the directories and subdirectories included on a clean
Linux installation, but the major ones I have decided to start with (more information will be
shared in the future). See you soon ;-)

https://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/usr.html

/boot/config-$(uname-r)
“/boot/config-$(uname-r)” is a text file that contains a configuration (feature/options) that the
kernel was compiled with. The “uname -r” is replaced by the kernel release21. It is important to
understand that the file is only needed for the compilation phase and not for loading the kernel,
so it can be removed or even altered by a root user and therefore not reflect the specific
configuration that was used.Overall, any time one of the following “make menuconfig”/make
xconfig”, “make localconfig”, “make oldconfig”, “make XXX_defconfig” or other “make
XXXconfig” creates a “.config” file. This file is not erased (unless using “make mrproper”).
Also, many distributions are copying that file to “/boot”22.

The build system will read the configuration file and use it to generate the kernel by compiling
the relevant source code. By using the configuration file we can customize the Linux kernel to
your needs23. The configuration file is based on key values - as shown in the screenshot below24.
Using the configuration we can enable/disable features like sound/networking/USB support as
we can see with the “CONFIG_MMU=y” in the screenshot below25. Also, we can adjust a
specific value of features like the “CONFIG_ARCH_MMAP_RND_BITS_MIN=28”26.

Moreover, in case of kernel modules we can add/remove modules and decide if we want to
compile them into the kernel itself or as a separate “.ko” file. In case the setting is “y” it means to
compile inside the kernel, “m” means as a separate file and “n” means not to compile27. Thus, if
“CONFIG_DRM_TTM=m” then the “TTM memory manager subsystem” is going to be
compiled outside of the kernel28. If “ttm” is loaded it will be shown in the output of “lsmod”29.

29 https://man7.org/linux/man-pages/man8/lsmod.8.html
28 https://github.com/torvalds/linux/blob/master/drivers/gpu/drm/ttm/ttm_module.c
27 https://stackoverflow.com/questions/14587251/understanding-boot-config-file
26 https://elixir.bootlin.com/linux/v6.4.11/source/arch/x86/Kconfig#L322
25 https://elixir.bootlin.com/linux/v6.4.11/source/arch/um/Kconfig#L36
24 https://blog.csdn.net/weixin_43644245/article/details/121578858
23 https://linuxconfig.org/in-depth-howto-on-linux-kernel-configuration
22 https://unix.stackexchange.com/questions/123026/where-kernel-configuration-file-is-stored
21 https://linux.die.net/man/1/uname

https://man7.org/linux/man-pages/man8/lsmod.8.html
https://github.com/torvalds/linux/blob/master/drivers/gpu/drm/ttm/ttm_module.c
https://stackoverflow.com/questions/14587251/understanding-boot-config-file
https://elixir.bootlin.com/linux/v6.4.11/source/arch/x86/Kconfig#L322
https://elixir.bootlin.com/linux/v6.4.11/source/arch/um/Kconfig#L36
https://blog.csdn.net/weixin_43644245/article/details/121578858
https://linuxconfig.org/in-depth-howto-on-linux-kernel-configuration
https://unix.stackexchange.com/questions/123026/where-kernel-configuration-file-is-stored
https://linux.die.net/man/1/uname

/proc/config.gz
Since kernel version 2.6 the configuration options that were used to build the current running
kernel are exposed using procfs in the following path “/proc/config.gz”. The format of the
content is the same as the .config file which is copied by different distribution to “/boot”30.

Overall, as opposed to the ".config” file the data of “config.gz” is compressed. Due to that, if we
want to view it content we can use zcat31 or zgrep32 which allow reading/searching inside
compressed files. As shown in the screenshot below (taken from copy.sh).

Lastly, in order for “config.gz” to be supported and exported by “/proc” the kernel needs to be
build with “CONFIG_IKCONFIG_PROC” enabled33 - as also shown in the screenshot below.
We can also go overt the creation of the “/proc” entry34 and the function that returns the data
when reading that entry35.

35 https://elixir.bootlin.com/linux/v6.5/source/kernel/configs.c#L41
34 https://elixir.bootlin.com/linux/v6.5/source/kernel/configs.c#L60
33 https://elixir.bootlin.com/linux/v6.5/source/kernel/configs.c#L35
32 https://linux.die.net/man/1/zgrep
31 https://linux.die.net/man/1/zcat
30 https://medium.com/@boutnaru/the-linux-concept-journey-boot-config-uname-r-6a4dd16048c4

https://elixir.bootlin.com/linux/v6.5/source/kernel/configs.c#L41
https://elixir.bootlin.com/linux/v6.5/source/kernel/configs.c#L60
https://elixir.bootlin.com/linux/v6.5/source/kernel/configs.c#L35
https://linux.die.net/man/1/zgrep
https://linux.die.net/man/1/zcat
https://medium.com/@boutnaru/the-linux-concept-journey-boot-config-uname-r-6a4dd16048c4

What is an inode?
An inode (aka index node) is a data structure used by Unix/Linux like filesystems in order to
describe a filesystem object. Such an object could be a file or a directory. Every inode stores
pointers to the disk blocks locations of the object’s data and metadata36. An illustration of that is
shown below37.

Overall, the metadata contained in an inode is: file type (regular file/directory/symbolic
link/block special file/character special file/etc), permissions, owner id, group id, size, last
accessed time, last modified time, change time and number of hard links38.

By using inodes the filesystem tracks all files/directories saved on disk. Also, by using inodes we
can read any specific byte in the data of a file very effectively. We can see the number of total
inodes per mounted filesystem using the command “df -i”39. Also, we can see the inode of a
file/directory and other metadata of the file using the command “ls -i”40 or “stat”41. By the way,
the “stat” command can use different syscalls (depending on the filesystem and the specific
version) like “stat”42, “lstat”43 or “statx”44.

Lastly, you can check out “struct inode” in the source code of the Linux kernel45. Not all the
points/links are directly connected to the data blocks, however I will elaborate on that in a future
writeup.

45 https://elixir.bootlin.com/linux/v6.4.2/source/include/linux/fs.h#L612
44 https://man7.org/linux/man-pages/man2/statx.2.html
43 https://linux.die.net/man/2/lstat
42 https://linux.die.net/man/2/stat
41 https://linux.die.net/man/1/stat
40 https://man7.org/linux/man-pages/man1/ls.1.html
39 https://linux.die.net/man/1/df
38 https://www.stackscale.com/blog/inodes-linux/
37 https://www.sobyte.net/post/2022-05/linux-inode/
36 https://www.bluematador.com/blog/what-is-an-inode-and-what-are-they-used-for

https://elixir.bootlin.com/linux/v6.4.2/source/include/linux/fs.h#L612
https://man7.org/linux/man-pages/man2/statx.2.html
https://linux.die.net/man/2/lstat
https://linux.die.net/man/2/stat
https://linux.die.net/man/1/stat
https://man7.org/linux/man-pages/man1/ls.1.html
https://linux.die.net/man/1/df
https://www.stackscale.com/blog/inodes-linux/
https://www.sobyte.net/post/2022-05/linux-inode/
https://www.bluematador.com/blog/what-is-an-inode-and-what-are-they-used-for

Why is removing a file not dependent on the file’s
permissions?
Something which is not always understood correctly by Linux users is the fact that removing a
file is not dependent on the permissions of the file itself. As you can see in the screenshot below
even if a user has full permission (read+write+execute) it can’t remove a file. By the way,
removing a file is done by using the “unlink” syscall46 or the “unlinkat” syscall47.

The reason for that is because the data that states a file belongs to a directory is saved as part of
the directory itself. We can think about a directory as a “special file” whose data is the name and
the inode48 numbers of the files that are part of that specific directory.

Thus, if we add write permissions to the directory even if the user has no permissions to the file
(“chmod 000”) the file can be removed (from the directory) - as shown in the screenshot below.

48 https://medium.com/@boutnaru/linux-what-is-an-inode-7ba47a519940
47 https://linux.die.net/man/2/unlinkat
46 https://linux.die.net/man/2/unlink

https://medium.com/@boutnaru/linux-what-is-an-inode-7ba47a519940
https://linux.die.net/man/2/unlinkat
https://linux.die.net/man/2/unlink

VFS (Virtual File System)
VFS (Virtual File System, aka Virtual File Switch) is a software component of Linux which is
responsible for the filesystem interface between the user-mode and kernel mode. Using it allows
the kernel to provide an abstraction layer that makes implementation of different filesystems
very easy49.

Overall, VFS is masking the implementation details of a specific filesystem behind generic
system calls (open/read/write/close/etc), which are mostly exposed to user-mode application by
some wrappers in libc - as shown in the diagram below50.

Moreover, we can say that the main goal of VFS is to allow user-mode applications to access
different filesystems (think about NTFS, FAT, etc.) in the same way. There are four main objects
in VFS: superblock, dentries, inodes and files51.

Thus, “inode”52 is what the kernel uses to keep track of files. Because a file can have several
names there are “dentries” (“directory entries”) which represent pathnames. Also, due to the fact
a couple of processes can have the same file opened (for read/write) there is a “file” structure
that holds the information for each one (such as the cursor position). The “superblock” structure
holds data which is needed for performing actions on the filesystem - more details about all of
those and more (like mounting) are going to be published in the near future.

Lastly, there are also other relevant data structures that I will post on in the near future
(“filesystem”, “vfsmount”, “nameidata” and “address_space”).

52 https://medium.com/@boutnaru/linux-what-is-an-inode-7ba47a519940
51 https://www.win.tue.nl/~aeb/linux/lk/lk-8.html
50 https://www.starlab.io/blog/introduction-to-the-linux-virtual-filesystem-vfs-part-i-a-high-level-tour
49 https://www.kernel.org/doc/html/next/filesystems/vfs.html

https://medium.com/@boutnaru/linux-what-is-an-inode-7ba47a519940
https://www.win.tue.nl/~aeb/linux/lk/lk-8.html
https://www.starlab.io/blog/introduction-to-the-linux-virtual-filesystem-vfs-part-i-a-high-level-tour
https://www.kernel.org/doc/html/next/filesystems/vfs.html

tmpfs (Temporary Filesystem)

“tmpfs” is a filesystem that saves all of its files in virtual memory. By using it none of the files
created on it are saved to the system’s hard drive. Thus, if we unmount a tmpfs mounting point
every file which is stored there is lost. tmpfs holds all of the data into the kernel internal caches53.
By the way, it used to be called “shm fs”54.

Moreover, tmpfs is able to swap space if needed (it can also leverage “Transparent Huge Pages”),
it will fill up until it reaches the maximum limit of the filesystem - as shown in the screenshot
below. tmpfs supports both POSIX ACLs and extended attributes55. Overall, if we want to use
tmpfs we can use the following command: “mount -t tmpfs tmpfs [LOCATION]”. We can also
set a size using “-o size=[REQUESTED_SIZE]” - as shown in the screenshot below.

Lastly, there are different directories which are based on “tmpfs” like: “/run” and “/dev/shm”
(more on them in future writeups). To add support for “tmpfs” we should enable
“CONFIG_TMPFS” when building the Linux kernel56. We can see the implementation as part of
the Linux’s kernel source code57.

57 https://elixir.bootlin.com/linux/v6.6-rc1/source/mm/shmem.c#L133
56 https://cateee.net/lkddb/web-lkddb/TMPFS.html
55 https://man7.org/linux/man-pages/man5/tmpfs.5.html
54 https://cateee.net/lkddb/web-lkddb/TMPFS.html
53 https://www.kernel.org/doc/html/latest/filesystems/tmpfs.html

https://elixir.bootlin.com/linux/v6.6-rc1/source/mm/shmem.c#L133
https://cateee.net/lkddb/web-lkddb/TMPFS.html
https://man7.org/linux/man-pages/man5/tmpfs.5.html
https://cateee.net/lkddb/web-lkddb/TMPFS.html
https://www.kernel.org/doc/html/latest/filesystems/tmpfs.html

ramfs (Random Access Memory Filesystem)

“ramfs” is a filesystem that exports the Linux caching mechanism (page cache/dentry cache) as a
dynamically resizable RAM based filesystem. The data is saved in RAM only and there is no
backing store for it58.

Thus, if we unmount a “ramfs” mounting point every file which is stored there is lost - as shown
in the screenshot below. By the way, the trick is that files written to “ramfs” allocate dentries and
page cache as usual, but because they are not written they are never marked as being available
for freeing59.

Moreover, with “ramfs” we can keep on writing until we fill-up the entire physical memory. Due
to that, it is recommended that only root users will be able to write to a mounting point which is
based on “ramfs”. The differences between “ramfs” and “tmpfs”60 is that “tmpfs” is limited in
size and can also be swapped61.

Lastly, we can go over the implementation of “ramfs” as part of Linux's kernel source code62.
There are two implementations, one in case of an MMU63 and one in case there is no MMU64. A
good example for using “ramfs” is “initramfs”.

64 https://elixir.bootlin.com/linux/v6.5.3/source/fs/ramfs/file-nommu.c
63 https://elixir.bootlin.com/linux/v6.5.3/source/fs/ramfs/file-mmu.c
62 https://elixir.bootlin.com/linux/v6.5.3/source/fs/ramfs
61 https://wiki.debian.org/ramfs
60 https://medium.com/@boutnaru/the-linux-concept-journey-tmpfs-temporary-filesystem-886b61a545a0
59 https://lwn.net/Articles/157676/
58 https://docs.kernel.org/filesystems/ramfs-rootfs-initramfs.html

https://elixir.bootlin.com/linux/v6.5.3/source/fs/ramfs/file-nommu.c
https://elixir.bootlin.com/linux/v6.5.3/source/fs/ramfs/file-mmu.c
https://elixir.bootlin.com/linux/v6.5.3/source/fs/ramfs
https://wiki.debian.org/ramfs
https://medium.com/@boutnaru/the-linux-concept-journey-tmpfs-temporary-filesystem-886b61a545a0
https://lwn.net/Articles/157676/
https://docs.kernel.org/filesystems/ramfs-rootfs-initramfs.html

Buddy Memory Allocation

Basically, “buddy system” is a memory allocation algorithm. It works by dividing memory into
blocks of a fixed size. Each block of allocated memory is a power of two in size. Every memory
block in this system has an “order” (an integer ranging from 0 to a specified upper limit). The
size of a block of order n is proportional to 2n, so that the blocks are exactly twice the size of
blocks that are one order lower65

Thus, when a request for memory is made, the algorithm finds the smallest available block of
memory (that is sufficient to satisfy the request). If the block is larger than the requested size, it
is split into two smaller blocks of equal size (aka “buddies”). One of them is marked as free and
the second one as allocated. The algorithm then continues recursively until it finds the exact size
of the requested memory or a block that is the smallest possible size66.

Moreover, the advantages of such a system is that it is easy to implement and can handle a wide
range of memory sizes. The disadvantages are that it can lead to memory fragmentation and is
inefficient for allocating small amounts of memory. By the way, when the used “buddy” is freed,
if it's also free they can be merged together - a diagram of such relationship is shown below67.
Lastly, the Linux implementation of the “buddy system” is a little different than what is
described here, I am going to elaborate about it in a detected writeup.

67 https://www.expertsmind.com/questions/describe-the-buddy-system-of-memory-allocation-3019462.aspx
66 https://www.geeksforgeeks.org/operating-system-allocating-kernel-memory-buddy-system-slab-system/
65 https://en.wikipedia.org/wiki/Buddy_memory_allocation

https://www.expertsmind.com/questions/describe-the-buddy-system-of-memory-allocation-3019462.aspx
https://www.geeksforgeeks.org/operating-system-allocating-kernel-memory-buddy-system-slab-system/
https://en.wikipedia.org/wiki/Buddy_memory_allocation

