
The Windows
Concept Journey

version 2.0
October-2023

By Dr. Shlomi Boutnaru

Created using Craiyon, AI Image Generator

https://www.craiyon.com/


Table of Contents

Table of Contents 2
Introduction 4
Win32 API - Working with Strings 5
Window Messages 6
Recovery Directory 7
COM (Component Object Model) 8
Windows Services 10
What IPC (Inter Process Communication) mechanisms do we have in Windows? 12
Tasks (Windows Scheduler) 13
Objects 14
Object Manager 15
Clipboard 16
Handles 17



Introduction
When starting to learn Windows I believe that they are basic concepts that everyone needs to
know about. Because of that I have decided to write a series of short writeups aimed at providing
the basic vocabulary and understanding for achieving that.

Overall, I wanted to create something that will improve the overall knowledge of Windows in
writeups that can be read in 1-3 mins. I hope you are going to enjoy the ride.

Lastly, you can follow me on twitter - @boutnaru (https://twitter.com/boutnaru). Also, you can
read my other writeups on medium - https://medium.com/@boutnaru.

Lets GO!!!!!!

https://twitter.com/boutnaru
https://medium.com/@boutnaru


Win32 API - Working with Strings
After Microsoft added support for Unicode as part of Windows, it still needed to support the
usage of ANSI strings. The way Microsoft decided to do it is by providing two sets of API (one
for ANSI and the second for Unicode. It is important to know that the ANSI version of the API
converts the strings to Unicode before calling the relevant syscalls (the kernel is Unicode only).

For example, in order to create a new process we can use “CreateProcessA” or
“CreateProcessW” (A for ANSI strings and W for wide char aka Unicode). You might remember
that you called CreateProcess and none of the above - so how did it work? The trick is using
macros. You called a macro that checked if the UNICODE was defined. If it was defined it made
a call to the function ending with “W” else it called the one ending with “A” - see the illustration
below for the entire flow.

By the way, in the documentation (like MSDN) the functions names are without the suffix (“A” or
“W”) despite the fact it is the name of the macro and not of the functions themself. After
compilation the executable contains a reference/dependency to a specific function (you can see
it in the diagram below - I have extracted the strings from different DLLs showing the symbol
names).



Window Messages
GUI applications under Windows react to different events from the user and the operating system
itself. In case of user events, think about: keys pressed, touch-screen gestures, mouse clicks and
more. In the case of OS events, think about plugging a new hardware device or changing a
power-state1 (like hibernation or sleep).

Overall, Windows communicates with windows created by applications using messages (aka
“Window Messages”. In essence, a message is a number that defines a specific event sent to a
window. Every window has a “Window Procedure”, which is a function that processes all
messages sent to windows of the same class2.

By the way, from the perspective of the Windows kernel the following classes can be created
using the “CreateWindow” API call: BUTTON, COMBOBOX, EDIT, LISTBOX, MDICLIENT,
SCROLLBAR and STATIC3.

Moreover, due to the fact an application can receive many messages and it can have several
windows (each with its own window procedure) a loop to retrieve the message is needed. It is
called “The Message Loop” which dispatches the message to the correct window4.

To summarize, in a Windows GUI application, “The Message Loop” is a continuous loop that
retrieves messages from the operating system and dispatches them to the appropriate “Window
Procedure”. It is responsible for handling all of the user input (and other events) that occur in the
application - as shown in the diagram below5. In order to pull a message from the queue we can
call “GetMessage”6.

6 https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-getmessage
5 https://learn.microsoft.com/en-us/windows/win32/inputdev/about-keyboard-input
4 https://learn.microsoft.com/en-us/windows/win32/learnwin32/window-messages
3 http://winapi.freetechsecrets.com/win32/WIN32CreateWindow.htm
2 https://learn.microsoft.com/en-us/windows/win32/winmsg/window-procedures
1 https://learn.microsoft.com/en-us/windows/win32/learnwin32/window-messages

https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-getmessage
https://learn.microsoft.com/en-us/windows/win32/inputdev/about-keyboard-input
https://learn.microsoft.com/en-us/windows/win32/learnwin32/window-messages
http://winapi.freetechsecrets.com/win32/WIN32CreateWindow.htm
https://learn.microsoft.com/en-us/windows/win32/winmsg/window-procedures
https://learn.microsoft.com/en-us/windows/win32/learnwin32/window-messages


Recovery Directory
A bunch of folks have asked me about what is the goal of different directories in a Windows
filesystem hierarchy. So I have decided to write a short series about that. In this writeup we are
going to talk about the “Recovery” directory.

It could be that you have never seen this directory before on your root drive (“C:\Recovery”).
The reason for that is that the directory is marked “hidden” - as shown in the screenshot below.

By the way it is not enough to display hidden items in explorer to see it. In order to show it we
need to unmark “Hide Protected Operating system files (recommended)”7 - you can see the entire
flow in the following link.

Overall, the directory is a leftover from a previous version of Windows (the version before an
upgrade that was made). It is used in cases where there are issues after an upgrade and the user
wants to revert back. Thus, after a successful upgrade you can probably delete it8.

8https://answers.microsoft.com/en-us/windows/forum/all/can-you-remove-the-large-crecovery-folder-in/e2185d3b-9
30c-41c0-a1d5-62c753b8a085

7 https://www.techbout.com/hidden-system-files-windows-10-51145/

https://answers.microsoft.com/en-us/windows/forum/all/can-you-remove-the-large-crecovery-folder-in/e2185d3b-930c-41c0-a1d5-62c753b8a085
https://answers.microsoft.com/en-us/windows/forum/all/can-you-remove-the-large-crecovery-folder-in/e2185d3b-930c-41c0-a1d5-62c753b8a085
https://www.techbout.com/hidden-system-files-windows-10-51145/


COM (Component Object Model)
COM (Component Object Model) is a platform-independent, distributed, object-oriented system
for creating binary software components that can interact with each other. COM is the foundation
technology for Microsoft's OLE (compound documents) and ActiveX (Internet-enabled
components) technologies. These objects can be within a single process, in other processes, even
on remote computers9.

COM was introduced by Microsoft in 1993. It is used for IPC (Inter Process Communication) in
a variety of programming languages. Also, COM allows the reuse of objects without any
knowledge of their internal implementation, it forces component implementers to provide
well-defined interfaces that are separated from the implementation10.

Let us go over a small example of using COM. Excel uses COM to enable users to
create/modify/save/share excel files. By using COM we don’t need to understand the binary
format of excel files in order to perform the different operations. You can see a demonstration for
that in the screenshot below.

Moreover, COM objects are registered with the operating system so they could be loaded in the
future. The magic behind that is CLSID (Class ID). A CLSID is a globally unique identifier that
identifies a COM class object. If your server or container allows linking to its embedded objects,
you need to register a CLSID for each supported class of objects11.

CLSID is stored in the registry under HKEY_CLASSES_ROOT\CLSID\{CLSID value}12. It is
used by the operating system to locate the appropriate code for loading. For examples of CLSIDs
I suggest going over the following link
https://www.elevenforum.com/t/list-of-windows-11-clsid-key-guid-shortcuts.1075/.

They are several related technologies that we are going to talk about in future writeups: COM+,
DCOM, Windows Runtime (aka WinRT), XPCOM (aka nano-COM), .NET framework,
DEC/RPC, OLE, ActiveX, MSRPC and DDE13

13 https://learn.microsoft.com/en-us/windows/win32/com/component-object-model--com--portal
12 https://www.trendmicro.com/vinfo/us/security/definition/clsid

11 https://learn.microsoft.com/en-us/windows/win32/com/clsid-key-hklm

10 https://en.wikipedia.org/wiki/Component_Object_Model

9 https://learn.microsoft.com/en-us/windows/win32/com/component-object-model--com--portal

https://www.elevenforum.com/t/list-of-windows-11-clsid-key-guid-shortcuts.1075/
https://learn.microsoft.com/en-us/windows/win32/com/component-object-model--com--portal
https://www.trendmicro.com/vinfo/us/security/definition/clsid
https://learn.microsoft.com/en-us/windows/win32/com/clsid-key-hklm
https://en.wikipedia.org/wiki/Component_Object_Model
https://learn.microsoft.com/en-us/windows/win32/com/component-object-model--com--portal




Windows Services
Before we are going to talk about processes which are related to services handled under
Windows (like services.exe and svchost.exe) we have to explain what a service is.

Services are processes which are managed by the operating system, it resembles demons in
Linux (but there are a couple of differences that I am going to talk about in a different writeup).

Due to security reasons services can be executed at least under 3 different entities: System,
Network Service and Local Service (each of them with different permissions and privileges - we
will cover them in more details in the future). Of course, we can also run a service using a local
user or a domain user with any access rights that we want.

There are different ways in which we can administer services, however I am going to focus on
probably the 4 well known interfaces. First, Win32 API (it is used also for 64 bit despite its
name) such as StartService14. Second, the mmc snap-in “services.msc”15. Third, PowerShell by
leveraging cmdlets such as: New-Service, Get-Service, Restart-Service, Stat-Service,
Stop-Service and more. Fourth, the command line tool “sc.exe”16.

A service can be in one of the three major states: started, stopped or paused. Alos, each service
has a startup state which defines what should happen with the service when the OS starts - it
could be one of the following: Automatic, Automatic (Delayed Start), Manual or Disabled. Let
us go over each and one of them.

Automatic, in this configuration the SCM starts the service as part of the system boot process.
In the case of the delayed start, it's an optimization feature to reduce the time it takes the system
to boot-up. “Automatic Start” is still run by the SCM but not during the boot process (they are
started automatically shortly after the boot process has finished). Manual, in this configuration
the SCM does not start the service and it needs to be from some other administrative interface (as
we explained above), we can also script it if we want. Disabled, in this configuration even an
administrator can’t start the service. In order to start the service we first need to enable it by
setting it to any setting which is not disabled.

Over the years different security enhancements were added for service hardening (Examples are
session isolation, least privileges, restricted network access and service isolation). We are going
to speak about it more when talking about security and the process of hardening the OS.

16 https://ss64.com/nt/sc.html
15 https://www.thewindowsclub.com/open-windows-services
14 https://docs.microsoft.com/en-us/windows/win32/services/service-functions

https://ss64.com/nt/sc.html
https://www.thewindowsclub.com/open-windows-services
https://docs.microsoft.com/en-us/windows/win32/services/service-functions


In the screenshot below you can see examples for the things we have talked about regarding the
DHCP Client service. On the left we can see the status and the startup type and on the right the
user which the service is logging on behalf of.
In addition, I am going to talk about: dependency management and recovery handling. In the
screenshot below an example of those configurations are shown regarding the “DHCP Client”
service (from services.msc). It is time to deep dive into it, so let’s go.

In the case of dependency management in the configuration of each service there is a list of
dependent services and the list of the services that depend on it. Those lists are checked by the
SCM when starting and stopping services.

Regarding recovery, the configuration allows setting actions for first/second/subsequent failures.
The action could be to restart the service/the computer or execute an arbitrary command. We
could also reset the fail count after N (we can set it) days and enable actions for cases the service
stops with errors.

All the configurations of services are saved as part of the Registry
(HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services). It is important to know
that kernel drivers configuration is also stored there (we will go over it as part of the SCM
discussion).

Next we are going to check out the SCM (Service Control Manager) which is the OS part
responsible for managing all the services and their configuration.



What IPC (Inter Process Communication)
mechanisms do we have in Windows?
Due to the fact that each process in Windows has its memory address space17 we can’t pass
pointers between threads in different processes and expect to see the same data in the same
virtual address. It could be that the virtual address is not valid in one of the address spaces or
we have a different data stored there (they are of other cases also).

In order to allow different threads (in different processes) to pass data between them we need to
use an IPC (Inter Process Communication) mechanism - an illustration of that is seen in the
diagram below18. Moreover, each OS has its own IPC mechanisms. On Windows we have the
following mechanisms: clipboard, Windows Messages, COM (Component Object Model), DDE
(Dynamic Data Exchange), Shared Memory, File Mapping, Mailslots, Pipes, RPC (Remote
Procedure Call), ALPC (Advance Local Procedure Call) and sockets19.

There are also folks that say we can use files on the filesystem for IPC but it is not a specific
mechanism of Windows so I won't speak about it for now. Lastly, when talking about IPC we
should also talk about synchronization objects, however I will leave it for a future discussion.

19 https://www.slideshare.net/mfsi_vinothr/ipc-mechanisms-in-windows
18 https://www.geeksforgeeks.org/inter-process-communication-ipc/
17 https://medium.com/@boutnaru/linux-memory-management-part-1-introduction-896f376d3713

https://www.slideshare.net/mfsi_vinothr/ipc-mechanisms-in-windows
https://www.geeksforgeeks.org/inter-process-communication-ipc/
https://medium.com/@boutnaru/linux-memory-management-part-1-introduction-896f376d3713


Tasks (Windows Scheduler)
Overall, a task is a scheduled work that is performed by the “Task Scheduler” service. Each task
has several components: triggers, actions, principals, settings, registration information and data -
as shown in the diagram below20.

Triggers are events/time-based conditions which are used as a criteria for starting an execution of
a task. A task can have multiple triggers up to a maximum of 4821. Also, actions are the actual
work performed by a task. A task can have a single/multiple actions up to a maximum of 32
actions. We can different types of actions: “ComHandler” (COM), “Exec Action”, “Email
Action” (sending an email notification) and “Show Message Action”22.

Moreover, principles is the definition of the security context in which the task is executing on
behalf of, including UAC settings and more23. Settings, that is the configuration used by the
“Task Scheduler” while running the task. Think about if we can run multiple instances of the
task, or what to do with the task if the system is in idle state and more. By default a task will stop
after 72 hours, unless we change the “ExecutionTimeLimit”24.

In addition, registration information is the data collected when the task is created/registered. Data
elements that can be included (but not limited to) are: author, date, description, task version,
security descriptor and more25. We can also have additional documentation for the tasks (this is
the data portion in the diagram shown below). Lastly, “Task Scheduler” has two versions (“1.0”
and “2.0”) which have differences in the API they support and the configuration that can be
made.

25 https://learn.microsoft.com/en-us/windows/win32/taskschd/task-registration-information
24https://learn.microsoft.com/en-us/windows/win32/api/taskschd/nf-taskschd-itasksettings-get_executiontimelimit
23 https://learn.microsoft.com/en-us/windows/win32/taskschd/security-contexts-for-running-tasks
22 https://learn.microsoft.com/en-us/windows/win32/taskschd/task-actions
21 https://learn.microsoft.com/en-us/windows/win32/taskschd/task-triggers
20 https://learn.microsoft.com/en-us/windows/win32/taskschd/tasks

https://learn.microsoft.com/en-us/windows/win32/taskschd/task-registration-information
https://learn.microsoft.com/en-us/windows/win32/api/taskschd/nf-taskschd-itasksettings-get_executiontimelimit
https://learn.microsoft.com/en-us/windows/win32/taskschd/security-contexts-for-running-tasks
https://learn.microsoft.com/en-us/windows/win32/taskschd/task-actions
https://learn.microsoft.com/en-us/windows/win32/taskschd/task-triggers
https://learn.microsoft.com/en-us/windows/win32/taskschd/tasks


Objects
Basically, objects are data structures that represent system resources. Think about things like
processes and threads26. Those object are divided to two main parts: the object header “struct
_OBJECT_HEADER”27 and the body which holds the specific information regarding a system
resource. Examples are: _EPROCESS28 , _FILE_OBJECT29 and more.

Moreover, we can see a list of available object types using the “WinObj” tool from Sysinternals -
as shown in the screenshot below. By the way, the subsystem that manages the Windows
resources is the “Object Manager”, which is part of the “Windows Executive”. The “Windows
Executive” is contained as part of “ntoskrnl.exe”30.

Overall, they are three different categories of objects in Windows: user, graphics (GDI objects)
and kernel31. In User we have objects like: “Hook”32 and “Menu”33. In GDI we have objects like:
“Font”34 and “Region”35. Lastly, in the case of kernel objects we have examples like: “Desktop”36

and “Job”37.

37 https://learn.microsoft.com/en-us/windows/win32/procthread/job-objects
36 https://learn.microsoft.com/en-us/windows/win32/winstation/desktops
35 https://learn.microsoft.com/en-us/windows/win32/gdi/regions
34 https://learn.microsoft.com/en-us/windows/win32/gdi/fonts-and-text
33 https://learn.microsoft.com/en-us/windows/win32/menurc/menus
32 https://learn.microsoft.com/en-us/windows/win32/winmsg/hooks
31 https://learn.microsoft.com/en-us/windows/win32/sysinfo/object-categories
30 https://learn.microsoft.com/en-us/previous-versions//cc768129(v=technet.10)
29 https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_file_object
28 https://www.geoffchappell.com/studies/windows/km/ntoskrnl/inc/ntos/ps/eprocess/index.htm
27 https://www.nirsoft.net/kernel_struct/vista/OBJECT_HEADER.html
26 https://learn.microsoft.com/en-us/windows/win32/sysinfo/handles-and-objects

https://learn.microsoft.com/en-us/windows/win32/procthread/job-objects
https://learn.microsoft.com/en-us/windows/win32/winstation/desktops
https://learn.microsoft.com/en-us/windows/win32/gdi/regions
https://learn.microsoft.com/en-us/windows/win32/gdi/fonts-and-text
https://learn.microsoft.com/en-us/windows/win32/menurc/menus
https://learn.microsoft.com/en-us/windows/win32/winmsg/hooks
https://learn.microsoft.com/en-us/windows/win32/sysinfo/object-categories
https://learn.microsoft.com/en-us/previous-versions//cc768129(v=technet.10)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_file_object
https://www.geoffchappell.com/studies/windows/km/ntoskrnl/inc/ntos/ps/eprocess/index.htm
https://www.nirsoft.net/kernel_struct/vista/OBJECT_HEADER.html
https://learn.microsoft.com/en-us/windows/win32/sysinfo/handles-and-objects


Object Manager
As part of the Windows operating system there is a single “Object Manager” that maintains all
the objects38. Among the tasks the “Object Manager” does are: creating objects, verifying that a
process has a right to use an object, creating object handles39 and returning them to the caller,
maintaining resource quotas, duplicating handles and closing handles40.

Overall, Windows has more than 25 types of objects. Some examples are: files, devices, threads,
processes, events, mutexes, jobs, registry keys, sections, access tokens - as shown in the
screenshot below taken from “Process Explorer”. The kernel routines which provide a direct
interface with the “Object Manager” are prefixed with “Ob”41. Some examples are:
“ObGetObjectSecurity”42 and “ObReferenceObjectByHandle”43.

Moreover, we can go over the reference implementation of the “Object Manager” as part of
ReactOS44. There is also the internal header file45.

Lastly, we can summarize the “Object Manager” as being responsible for keeping track of all the
resources in Windows. It also provides a way for applications to access and manage those
resources in a secure and efficient way46.

46https://www.i.u-tokyo.ac.jp/edu/training/ss/lecture/new-documents/Lectures/01-ObjectManager/ObjectManager.pdf
45 https://github.com/reactos/reactos/blob/master/ntoskrnl/include/internal/ob.h
44 https://github.com/reactos/reactos/tree/master/ntoskrnl/ob
43 https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-obreferenceobjectbyhandle
42 https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-obgetobjectsecurity
41 https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/windows-kernel-mode-object-manager
40 https://learn.microsoft.com/en-us/windows/win32/sysinfo/object-manager
39 https://medium.com/@boutnaru/windows-handles-594b36c39d2f
38 https://medium.com/@boutnaru/windows-objects-2c289da600bf

https://www.i.u-tokyo.ac.jp/edu/training/ss/lecture/new-documents/Lectures/01-ObjectManager/ObjectManager.pdf
https://github.com/reactos/reactos/blob/master/ntoskrnl/include/internal/ob.h
https://github.com/reactos/reactos/tree/master/ntoskrnl/ob
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-obreferenceobjectbyhandle
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-obgetobjectsecurity
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/windows-kernel-mode-object-manager
https://learn.microsoft.com/en-us/windows/win32/sysinfo/object-manager
https://medium.com/@boutnaru/windows-handles-594b36c39d2f
https://medium.com/@boutnaru/windows-objects-2c289da600bf


Clipboard
Overall, the clipboard is a temporary storage in Windows that can store different data types.
Among those data types are images and text. The operation which stores data in the clipboard is
called “copy” (Ctrl+C), also we can use “cut” using “Ctrl+X”. In order to paste data from the
clipboard we use “Ctrl+V”47.

In Windows 10 we can store in the clipboard up to 25 items. We can access the “Clipboard
History” using the keyboard shortcut “Winkey + V”. While pressing this shortcut a menu
showing the current clipboard history - as shown in the screenshot below48. We can see that the
first item is an image and the other two are strings.

Lastly, in Windows 10/11 we can also copy text/images from one PC to another using a cloud
based clipboard. We can also pin items that we would like to use. In order to do that we need to
sign with a Microsoft account/work account49.

49 https://support.microsoft.com/en-us/windows/clipboard-in-windows-c436501e-985d-1c8d-97ea-fe46ddf338c6
48 https://www.emailoverloadsolutions.com/blog/windows-clipboard-history-feature
47 https://www.howtogeek.com/671222/how-to-enable-and-use-clipboard-history-on-windows-10/

https://support.microsoft.com/en-us/windows/clipboard-in-windows-c436501e-985d-1c8d-97ea-fe46ddf338c6
https://www.emailoverloadsolutions.com/blog/windows-clipboard-history-feature
https://www.howtogeek.com/671222/how-to-enable-and-use-clipboard-history-on-windows-10/


Handles
Overall, applications running in user mode can’t directly access the Windows objects50 or object
data held by the “Object Manager”. Due to that, an application needs to obtain a handle to the
specific object. For each handle there is an entry in a handle table which resides in kernel space,
there is one for each process51.

Thus, an object in Windows is accessed by the user using a per process “handle table”. Opening
an object results in adding a pointer to the object to the specific “handle table”. The return value
is “an index” to that table52.

We can see when using different Win32 API function like when opening/creating a file using
“CreateFileW” the return value is of type HANDLE53.

Lastly, we can use Sysinternals’ tools like “Process Explorer” and handle.exe54 in order to see
which open handles each process has. An example showing the handles for “cmd.exe” using
“Process Explorer” is shown in the screenshot below.

54 https://learn.microsoft.com/en-us/sysinternals/downloads/handle
53 https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilew
52 https://www.cs.miami.edu/home/burt/journal/NT/handle_table.html
51 https://learn.microsoft.com/en-us/windows/win32/sysinfo/handles-and-objects
50 https://medium.com/@boutnaru/windows-objects-2c289da600bf

https://learn.microsoft.com/en-us/sysinternals/downloads/handle
https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilew
https://www.cs.miami.edu/home/burt/journal/NT/handle_table.html
https://learn.microsoft.com/en-us/windows/win32/sysinfo/handles-and-objects
https://medium.com/@boutnaru/windows-objects-2c289da600bf

