
The macOS
Process Journey

Version 4.0
January - 2024

By Dr. Shlomi Boutnaru

Created using Craiyon, AI Image Generator

https://www.craiyon.com/


Table of Contents

Table of Contents 2
Introduction 3
Launchd (System/Per-user Daemon Manager) 4
UsageTrackingAgent 6
timed (Time Sync Daemon) 7
tccd (Transparency, Consent, and Control Daemon) 8
nfcd (Near Field Communication Daemon) 9
nearbyd (The Proximity Daemon) 10
Installd (Software Installation Daemon) 11
locationd (Location Services Daemon) 12
searchpartyd (Search Party Daemon) 13
apfsd (APFS Volume Manager) 14
coreaudiod (Core Audio Daemon) 15
hidd (Human Interface Device Daemon) 16
homed (Home Services Daemon) 17
powerd (Power Daemon) 18
sandboxd (Sandbox Daemon) 19
fontd (Font Daemon) 20
gamecontrollerd (Game Controller Daemon) 21
auditd (Audit Log Management Daemon) 22



Introduction
When starting to learn OS internals I believe that we must understand the default processes
executing (roles, tasks, etc). Because of that I have decided to write a series of short writeups
named "Process ID Card" (aimed at providing the OS vocabulary).

Overall, I wanted to create something that will improve the overall knowledge of MacOS in
writeups that can be read in 1-3 mins. I hope you are going to enjoy the ride.

Lastly, you can follow me on twitter - @boutnaru (https://twitter.com/boutnaru). Also, you can
read my other writeups on medium - https://medium.com/@boutnaru. Lastly, You can find my
free eBooks at https://TheLearningJourneyEbooks.com.

Lets GO!!!!!!

https://twitter.com/boutnaru
https://medium.com/@boutnaru
https://thelearningjourneyebooks.com


Launchd (System/Per-user Daemon Manager)
When starting to learn OS internals we must understand the default processes executing (roles,
tasks, etc). Because of that I am going to start a series of posts named "Process ID Card" (aimed
at providing the OS vocabulary). We are going to start our macOS journey with “launchd”.

Overall, “launchd” is the first user mode application which is started by the kernel of macOS.
The pid of “launchd” is 1, we can think about it as similar to “init (pid 1)” in Linux systems
(more information about that you can read in the following link
https://medium.com/@boutnaru/the-linux-process-journey-pid-1-init-60765a069f17).

Based on man (yes we also have man in macOS ;-) “launchd” manages processes for both the
system as well as for specific users (“man 8 launchd”). Also, “launchd” manages XPC services
(more on that in future writeups) which are included in applications and frameworks on macOS.
By the way, we can’t execute “launchd” directly.

One of the differences between “init” (Linux) and “launchd” (macOS) is the fact that “launchd”
has a concept of both daemons and agents. Daemons are system-wide services which have one
instance for each system (like daemons on Linux systems). Agents are services which run on for
specific users. The reason for the separation between daemons and agents is that only the agents
should interact with users and display a UI (User Interface).

In order to configure “launchd” we should use “launchctl” (“man 1 launchctl”). The relevant
files which store the configurations of “launchd” are stored in the following directories:
“~/Library/LaunchAgents”1, “/Library/LaunchAgents”2, “/Library/LaunchDaemons”3,
“/System/Library/LaunchAgents”4 and “/System/Library/LaunchDaemons”5. You can see an
example of “/Library/LaunchDaemon” in the screenshot below6. All the configurations are based
on “*.plist” files (Property List), I will explain about them in a future writeup.

For more information I suggest reading the following links from Apple’s developer docs
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPSystemStart
up/Chapters/Introduction.html and
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPSystemStart
up/Chapters/CreatingLaunchdJobs.html.

6 https://carbonite.azureedge.net/images/Mac/mac20_manuninstall_ldaemons_carboniteplists.png
5Daemons provided by apple.
4Agents for a user provided by apple.
3Daemons configured by the administrator.
2Agents for a user configured by the administrator.
1Agents for a specific user configured by the user.

https://medium.com/@boutnaru/the-linux-process-journey-pid-1-init-60765a069f17
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/Introduction.html
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/Introduction.html
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingLaunchdJobs.html
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingLaunchdJobs.html
https://carbonite.azureedge.net/images/Mac/mac20_manuninstall_ldaemons_carboniteplists.png


Important note: init isn't just Linux (It's UNIX). Today, the majority of Linux systems have
moved to systemd. Systemd has similar concepts as launchd, being able to run services as root
and as a specific user/group. In the writeup I am focused on “old-fashioned” init (before the
move to systemd).



UsageTrackingAgent
“UsageTrackingAgent” is responsible for monitoring and reporting limits that have been set by
“Screen Time”7. You can see the default UI in the image below8.

The “UsageTrackingAgent” is a Mach-O binary which is executed using permissions of the
logged on user and it is signed by Apple’s software signing key. Also, it is being started by
“launchd”9.

If you want to read more about “Screen Time” on Mac I suggest reading the following article
https://support.apple.com/en-us/HT210387. By the way, due to the nature of the information that
is collected by “Screen Time” it can be a great data resource for forensics analysis and incident
response10.

Moreover, “Screen Time” is also relevant for iOS as can be seen in the following link
https://cellebrite.com/en/data-quality-and-quantity-how-to-get-the-best-of-both-worlds-part-2-ex
amining-screen-time-artifacts/.

10 https://www.sans.org/cyber-security-courses/mac-and-ios-forensic-analysis-and-incident-response/
9 https://medium.com/@boutnaru/macos-launchd-a6628195f6e7

8https://support.apple.com/library/content/dam/edam/applecare/images/en_US/macos/Big-Sur/macos-big-sur-system-prefs-screen
-time-app-usage.png

7 https://manp.gs/mac/8/UsageTrackingAgent

https://support.apple.com/en-us/HT210387
https://cellebrite.com/en/data-quality-and-quantity-how-to-get-the-best-of-both-worlds-part-2-examining-screen-time-artifacts/
https://cellebrite.com/en/data-quality-and-quantity-how-to-get-the-best-of-both-worlds-part-2-examining-screen-time-artifacts/
https://www.sans.org/cyber-security-courses/mac-and-ios-forensic-analysis-and-incident-response/
https://medium.com/@boutnaru/macos-launchd-a6628195f6e7
https://support.apple.com/library/content/dam/edam/applecare/images/en_US/macos/Big-Sur/macos-big-sur-system-prefs-screen-time-app-usage.png
https://support.apple.com/library/content/dam/edam/applecare/images/en_US/macos/Big-Sur/macos-big-sur-system-prefs-screen-time-app-usage.png
https://manp.gs/mac/8/UsageTrackingAgent


timed (Time Sync Daemon)
The goal of “timed” is to maintain the accuracy of the system clock automatically, it is done by
reference clocks (like by using NTP) - see the screenshot below11.

Since 2017 (macOS High Sierra) the roles of “ntpd” (Network Time Protocol Daemon) have
been merged into “timed”12.

The relevant config files for “timed” are: “/etc/ntpd.conf” (NTP server configuration),
“/var/db/timed/com.apple.timed.plist” (cached state of “timed”) and
“/System/Library/LaunchDaemons/com.apple.timed.plist” (the “time” service’s plist file for
launchd). Moreover, “timed” started by launchd13 and users should not start it manually14.

“timed” reaches out to the NTP server every 15 mins and using the syscall settimeofday15 it sets
the system clock16. Also, “timed” is running under the _timed user - as shown in the screenshot
below17 . _timed is part of the _timed and _sntpd18 groups. By the way, those are not the only
groups that _timed is a member of.

18 https://keith.github.io/xcode-man-pages/sntpd.8.html
17 https://malykh.blogspot.com/2021/12/macos.html
16 https://developer.apple.com/forums/thread/83240

15

https://developer.apple.com/library/archive/documentation/System/Conceptual/ManPages_iPhoneOS/man2/settimeofday.2.html

14 https://keith.github.io/xcode-man-pages/timed.8.html
13 https://medium.com/@boutnaru/macos-launchd-a6628195f6e7
12 https://eclecticlight.co/2017/10/27/has-anyone-got-the-time-how-high-sierra-has-changed-time-synchronisation/
11 https://malykh.blogspot.com/2021/12/macos.html

https://keith.github.io/xcode-man-pages/sntpd.8.html
https://malykh.blogspot.com/2021/12/macos.html
https://developer.apple.com/forums/thread/83240
https://developer.apple.com/library/archive/documentation/System/Conceptual/ManPages_iPhoneOS/man2/settimeofday.2.html
https://keith.github.io/xcode-man-pages/timed.8.html
https://medium.com/@boutnaru/macos-launchd-a6628195f6e7
https://eclecticlight.co/2017/10/27/has-anyone-got-the-time-how-high-sierra-has-changed-time-synchronisation/
https://malykh.blogspot.com/2021/12/macos.html


tccd (Transparency, Consent, and Control Daemon)
TCC is a macOS mechanism that is used in order to control/limit access of applications to
specific features of the operating system. Among those privacy related permissions are: full disk
access, location services, contacts, camera, accessibility, microphone and more19. It was
introduced in OSX Mavericks (10.9) that was released on 22-October-2013.

Thus, we can say TCC is used in macOS for preventing applications from accessing data that
might be sensitive without any user consent. For example in case of an access by an app to the
“Downloads“ folder the operating system will display an alert20. It is executed multiple times by
launchd, once under the root user and the others using the permissions of the logged-on users

We can use the “Privacy” tab in the “Security & Privacy” pane in order to manage the
configuration of TCC - you can see that in the screenshot below21. Also, can manage the privacy
database using the “tccutil” cli command22.

All the information of TCC is stored using SQLite databases that can be located in the following
folders: “/Library/Application Support/com.apple.TCC” and “~/Library/Application
Support/com.apple.TCC”23. The name of the database is TCC.db24.

24 https://eclecticlight.co/2018/11/20/what-does-the-tcc-compatibility-database-do/

23https://i.blackhat.com/USA21/Wednesday-Handouts/US-21-Regula-20-Plus-Ways-to-Bypass-Your-macOS-Privacy-Mechanism
s.pdf

22 https://ss64.com/osx/tccutil.html
21 https://eclecticlight.co/2020/01/28/a-guide-to-catalinas-privacy-protection-4-tccutil/
20 https://www.malwarebytes.com/blog/news/2022/11/macos-ventura-bug-disables-security-software
19 https://www.rainforestqa.com/blog/macos-tcc-db-deep-dive

https://eclecticlight.co/2018/11/20/what-does-the-tcc-compatibility-database-do/
https://i.blackhat.com/USA21/Wednesday-Handouts/US-21-Regula-20-Plus-Ways-to-Bypass-Your-macOS-Privacy-Mechanisms.pdf
https://i.blackhat.com/USA21/Wednesday-Handouts/US-21-Regula-20-Plus-Ways-to-Bypass-Your-macOS-Privacy-Mechanisms.pdf
https://ss64.com/osx/tccutil.html
https://eclecticlight.co/2020/01/28/a-guide-to-catalinas-privacy-protection-4-tccutil/
https://www.malwarebytes.com/blog/news/2022/11/macos-ventura-bug-disables-security-software
https://www.rainforestqa.com/blog/macos-tcc-db-deep-dive


nfcd (Near Field Communication Daemon)
“nfcd” is responsible for managing the NFC (Near-Field Communication) controller25. “nfcd” is
a Mach-O binary file which is located at “/usr/libexec/nfcd”. Moreover, it is executed under the
“_applepay” by launchd26. It is needed by “ApplePay”, due to the fact it means making payments
using NFC27.

When running, “nfcd” exposes an XPC service called “com.apple.nfcd”. XPC service is an IPC
mechanism which allows applications to send data and messages between each other28. Also, iOS
apps can also use NFC to read information from different electronic devices like: toys, products
(for inventory tracking), in-store sign-up and more. When an app is active it can let the user
know that there is an expectation for a scan to be conducted - as shown in the image below29.

29 https://developer.apple.com/design/human-interface-guidelines/technologies/nfc/
28 https://developer.apple.com/documentation/xpc
27 https://www.macrumors.com/roundup/apple-pay/
26 https://medium.com/@boutnaru/macos-launchd-a6628195f6e7
25 https://keith.github.io/xcode-man-pages/nfcd.8.html

https://developer.apple.com/design/human-interface-guidelines/technologies/nfc/
https://developer.apple.com/documentation/xpc
https://www.macrumors.com/roundup/apple-pay/
https://medium.com/@boutnaru/macos-launchd-a6628195f6e7
https://keith.github.io/xcode-man-pages/nfcd.8.html


nearbyd (The Proximity Daemon)

“nearbyd” is the “Proximity Daemon” which is responsible for powering the spital interaction
between devices. “nerbyd” uses ultra-wideband and other wireless technologies. It is relevant
since macOS 10.14/iOS 12.030.

Moreover, the Mac-O binary is executed from “/usr/libexec/nearbyd” by launchd31. The created
process is running with the permission of the “_nearbyd” user.

Overall, by using “nearbyd” applications can interact with accessories by simply being close to
them32. In order to participate, devices in a physical proximity that share their position and
device token which uniquely identifies them. To achieve that Apple devices can use the high
frequency capabilities of the U1 chip33.

Thus, we can think about a game that allow users to control a paddle by moving their devices
and playing near each other - as seen in the diagram below34.

34 https://docs-assets.developer.apple.com/published/437d909426/rendered2x-1630937497.png
33 https://developer.apple.com/documentation/nearbyinteraction
32 https://developer.apple.com/nearby-interaction/
31 https://medium.com/@boutnaru/macos-launchd-a6628195f6e7
30 https://keith.github.io/xcode-man-pages/nearbyd.8.html

https://docs-assets.developer.apple.com/published/437d909426/rendered2x-1630937497.png
https://developer.apple.com/documentation/nearbyinteraction
https://developer.apple.com/nearby-interaction/
https://medium.com/@boutnaru/macos-launchd-a6628195f6e7
https://keith.github.io/xcode-man-pages/nearbyd.8.html


Installd (Software Installation Daemon)
“installd” is the macOS software installation daemon. It is used while packages are being
installed35. Moreover, “installed” is not meant to be launched manually by users. It is started by
launchd36 with the permissions of the root user. For installing software using cli we can execute
the “installer” tool37. In order to query/manipulate macOS installer packages/receipts we can use
“pkgutil”38.

Thus, we can say that “installd” handles installations/updates of applications form the “App
Store'' or update of the OS itself39. You can see an example of an error while installing an
application in the screenshot below40.

Lastly, “installd” is a component of Apple’s framework called PackageKit which is used for
managing programs and updates41. By the way, the “installd” Mach-O executable is located in
the “/System/Library/PrivateFrameworks/Package.Kit.framework/Resources/installd”.

41 https://iboysoft.com/news/macos-installd-high-cpu.html

40https://discussions.citrix.com/topic/418505-the-installer-encountered-an-error-that-caused-the-installation-to-fail-contact-the-sof
tware-manufacturer-for-assistance-macos-to-ventura-1321-citrix-workspace-app-23011/

39 https://tw.begin-it.com/2134-what-is-the-installd-process-in-os-x-and-why-is-it-using-cpu-on-my-mac
38 https://keith.github.io/xcode-man-pages/pkgutil.1.html
37 https://keith.github.io/xcode-man-pages/installer.8.html
36 https://medium.com/@boutnaru/macos-launchd-a6628195f6e7
35 https://keith.github.io/xcode-man-pages/installd.8.html

https://iboysoft.com/news/macos-installd-high-cpu.html
https://discussions.citrix.com/topic/418505-the-installer-encountered-an-error-that-caused-the-installation-to-fail-contact-the-software-manufacturer-for-assistance-macos-to-ventura-1321-citrix-workspace-app-23011/
https://discussions.citrix.com/topic/418505-the-installer-encountered-an-error-that-caused-the-installation-to-fail-contact-the-software-manufacturer-for-assistance-macos-to-ventura-1321-citrix-workspace-app-23011/
https://tw.begin-it.com/2134-what-is-the-installd-process-in-os-x-and-why-is-it-using-cpu-on-my-mac
https://keith.github.io/xcode-man-pages/pkgutil.1.html
https://keith.github.io/xcode-man-pages/installer.8.html
https://medium.com/@boutnaru/macos-launchd-a6628195f6e7
https://keith.github.io/xcode-man-pages/installd.8.html


locationd (Location Services Daemon)
“locationd” is the “Location Services Daemon'', which is responsible for handling the
geographical location of the Mac system. It is used to provide location information for specific
Mac applications42. The “locationd” Mach-O binary is located at “/usr/libexec/locationd”.

Also, “locationd” manages the authorization for widgets, daemons and applications that request
location updates43. The process is executed with the permissions of the “_locationd” user (it is
not the only process running with those permissions).

Moreover, macOS uses Wi-Fi network information in order to provide location data. One nice
use case is for changing the system’s timezone automatically based on its location44. “locationd”
is started by “launchd”45, the plist that is stored at the following location
“/System/Library/LaunchDaemons/com.apple.locationd.plist”.

Lastly, in order to enable/disable “Location Services” we can go to “System
Preferences->Security & Privacy->Privacy” and check/uncheck the “Enable Location Services” -
as shown in the screenshot below46.

46 https://www.lifewire.com/turn-on-location-services-on-mac-6665787
45 https://medium.com/@boutnaru/macos-launchd-a6628195f6e7
44https://www.tenable.com/audits/items/CIS_Apple_macOS_10.12_v1.2.0_Level_2.audit:313be81c537fdd9cc19caf953d550daf
43 https://www.manpagez.com/man/8/locationd/
42 https://discussions.apple.com/thread/2510219

https://www.lifewire.com/turn-on-location-services-on-mac-6665787
https://medium.com/@boutnaru/macos-launchd-a6628195f6e7
https://www.tenable.com/audits/items/CIS_Apple_macOS_10.12_v1.2.0_Level_2.audit:313be81c537fdd9cc19caf953d550daf
https://www.manpagez.com/man/8/locationd/
https://discussions.apple.com/thread/2510219


searchpartyd (Search Party Daemon)
“searchpartdy” is the “Search Party Daemon” which allows the discovery of remote devices and
services47. “searchpartd” is a Mach-O binary located at “/usr/libexec/searchpartyd” which is
started by launch () with the permissions of the root user.

Overall, “Search Party” is part of the “Find My” service for offline devices. Apple devices emit
the public part of a rotating key pair using BLE (Bluetooth Low Energy). In parallel, receiving
devices which are online encrypt the current location with the key and are sending that to Apple.
The private key is shared by CloudKit48.

Thus, we can say “Search Party” is the “offline finding” system of the “Find My” app. It is
responsible for sending communication to Apple: sync crypto keys, sending location reports as a
finder device, obtaining reports for owned devices49. By the way, information sent from the
device to Apple over HTTP uses a UserAgent with the substring “searchpartyd”50.

Lastly, “searchpartyd” is used with other components as part of the “Find My” app as seen in the
diagram below51.

51 https://arxiv.org/pdf/2103.02282.pdf
50 https://arxiv.org/pdf/2103.02282.pdf
49 https://iboysoft.com/wiki/searchpartyuseragent.html
48 https://mroi.github.io/apple-internals/
47 https://keith.github.io/xcode-man-pages/searchpartyd.8.html

https://arxiv.org/pdf/2103.02282.pdf
https://arxiv.org/pdf/2103.02282.pdf
https://iboysoft.com/wiki/searchpartyuseragent.html
https://mroi.github.io/apple-internals/
https://keith.github.io/xcode-man-pages/searchpartyd.8.html


apfsd (APFS Volume Manager)
“apfsd” is the “APFS Volume Manager” which is responsible for different tasks such as
encryption/decryption, automatic file fragmentation and more52.

Overall, “apfsd” is a Mach-O binary located at “/usr/libexec/apfsd”, which is running with the
permissions of the root user. It is started by “launchd”53 in case an APFS volume is identified54.
You can see an example of an APFS volume in the screenshot below that was taken from “Disk
Utility”55.

Moreover, APFS stands for “Apple File System”, which is a proprietary file system that replaced
HFS+ (Hierarchical File System) that was used by MacOS56. APFS was introduced since MacOS
Sierra (10.12.4)/iOS 10.3/tvOS 10.257. Lastly, APFS has multiple features like snapshots,
encryption, data integrity, crash protection, compression and space sharing58.

58 https://en.wikipedia.org/wiki/Apple_File_System
57 https://developer.apple.com/library/archive/releasenotes/General/WhatsNewinTVOS/Articles/tvOS10_2.html
56 https://www.lifewire.com/apple-apfs-file-system-4117093
55 https://www.howtogeek.com/327328/apfs-explained-what-you-need-to-know-apples-new-file-system/
54 https://www.unix.com/man-page/mojave/8/apfsd
53 https://medium.com/@boutnaru/macos-launchd-a6628195f6e7
52 https://www.unix.com/man-page/mojave/8/apfsd

https://en.wikipedia.org/wiki/Apple_File_System
https://developer.apple.com/library/archive/releasenotes/General/WhatsNewinTVOS/Articles/tvOS10_2.html
https://www.lifewire.com/apple-apfs-file-system-4117093
https://www.howtogeek.com/327328/apfs-explained-what-you-need-to-know-apples-new-file-system/
https://www.unix.com/man-page/mojave/8/apfsd
https://medium.com/@boutnaru/macos-launchd-a6628195f6e7
https://www.unix.com/man-page/mojave/8/apfsd


coreaudiod (Core Audio Daemon)
“coreaudiod” is the “Core Audio Daemon” which is responsible for audio management. It was
introduced as part of OS X 10.459. Overall, “Core Audio” includes everything related to
editing/recording/playing/compressing/decompressing/MIDI (Musical Instrument Digital
Interface)/signal processing/file stream parsing/audio synthesis60.

Also, “coreaudiod” is a Mach-O binary started by launchd61 with the permissions of the
“_coreaudiod” user. The binary is located at “/usr/sbin/coreaudiod”.

Thus, “coreaudiod” is part of the “Core Audio” , a low level API for working with sound as part
of macOS/iOS62. It is also relevant for tvOS, watchOS and iPadOS63. The OS X “Core Audio”
architecture is shown in the diagram below64. Lastly, For more information I suggest reading
Apple’s documentation about “Core Audio”65.

65https://developer.apple.com/library/archive/documentation/MusicAudio/Conceptual/CoreAudioOverview/Introduction/Introduct
ion.html

64https://developer.apple.com/library/archive/documentation/MusicAudio/Conceptual/CoreAudioOverview/WhatisCoreAudio/W
hatisCoreAudio.html

63 https://developer.apple.com/documentation/coreaudio
62 https://en.wikipedia.org/wiki/Core_Audio
61 https://medium.com/@boutnaru/macos-launchd-a6628195f6e7
60 https://www.howtogeek.com/321905/what-is-coreaudiod-and-why-is-it-running-on-my-mac/
59 https://keith.github.io/xcode-man-pages/coreaudiod.8.html

https://developer.apple.com/library/archive/documentation/MusicAudio/Conceptual/CoreAudioOverview/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/MusicAudio/Conceptual/CoreAudioOverview/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/MusicAudio/Conceptual/CoreAudioOverview/WhatisCoreAudio/WhatisCoreAudio.html#//apple_ref/doc/uid/TP40003577-CH3-SW1
https://developer.apple.com/library/archive/documentation/MusicAudio/Conceptual/CoreAudioOverview/WhatisCoreAudio/WhatisCoreAudio.html#//apple_ref/doc/uid/TP40003577-CH3-SW1
https://developer.apple.com/documentation/coreaudio
https://en.wikipedia.org/wiki/Core_Audio
https://medium.com/@boutnaru/macos-launchd-a6628195f6e7
https://www.howtogeek.com/321905/what-is-coreaudiod-and-why-is-it-running-on-my-mac/
https://keith.github.io/xcode-man-pages/coreaudiod.8.html


hidd (Human Interface Device Daemon)
“hidd” is the “HID Library Userland Daemon”66. HID stands for “Human Interface Device”.
Thus, “hidd” intercepts all keyboard taps/mouse movement/trackpad gestures and more. Also,
input from other devices like tablets are managed by “hidd”. An example of such HID devices
are shown in the image below67.

Overall, if “hidd” is not running most of the peripheral devices might be useless68. “hidd” is a
Mach-O binary started by launchd69 with the permission of the “_hidd” user. The binary is
located in “/usr/libexec/hidd”.

Thus, we can summarize that the “hidd” process purpose is to respond to input devices. In case
of termination of “hidd” it can block the system from responding to mouse/keyboard. However,
the OS will automatically restart it70.

70 https://macmyths.com/activity-monitor-mac-what-to-quit/
69 https://medium.com/@boutnaru/macos-launchd-a6628195f6e7
68 https://www.cyclonis.com/what-is-the-hidd-process-on-mac/
67 https://www.howtogeek.com/310378/what-is-hidd-and-why-is-it-running-on-my-mac/
66 http://www.manpagez.com/man/8/hidd/

https://macmyths.com/activity-monitor-mac-what-to-quit/
https://medium.com/@boutnaru/macos-launchd-a6628195f6e7
https://www.cyclonis.com/what-is-the-hidd-process-on-mac/
https://www.howtogeek.com/310378/what-is-hidd-and-why-is-it-running-on-my-mac/
http://www.manpagez.com/man/8/hidd/


homed (Home Services Daemon)
“homed” is the “Home Services Daemon” which is responsible for managing the home state and
controls of HomeKit accessories71.

Overall, HomeKit is Apple’s smart home platform. It allows users to control smart home
products using Siri voice commands or apps running on iPhone/MacOS/iPad all at once using
scenes and even set automations. HomeKit devices connect to an HomeKit setup using
WiFi/Thread/hub72.

Moreover, HomeKits support different types of devices such as: video doorbells, security
systems, locks, lights, fans, garage door openers, IP cameras, smoke alarms, sprinklers and
more73.

We can see an example of controlling a light bulb from an iOS, in which a user can adjust the
brightness and the coloring scheme74.

74 https://www.trustedreviews.com/reviews/apple-home-and-homekit
73 https://en.wikipedia.org/wiki/HomeKit
72 https://www.macrumors.com/guide/homekit/
71 https://keith.github.io/xcode-man-pages/homed.8.html

https://www.trustedreviews.com/reviews/apple-home-and-homekit
https://en.wikipedia.org/wiki/HomeKit
https://www.macrumors.com/guide/homekit/
https://keith.github.io/xcode-man-pages/homed.8.html


powerd (Power Daemon)
“powerd” is the “Power Daemon” which is responsible for managing energy preferences75.
“powerd” is a Mach-O binary located at “/System/Library/CoreServices/power.bundle/powerd”.
It is executed by “launchd”76 with the permissions of the root user.

Moreover, “powerd” is the one responsible for putting the system to sleep after it is idle. The
same thing is also relevant when the display shuts off/disks spin now77..

Lastly, you can configure the setting of “powerd” in the “Energy Saver” section as part of the
“System Preferences” - as seen in the screenshot below78.

78 https://eshop.macsales.com/blog/57756-use-the-macs-energy-saver-preference-pane/
77 https://www.howtogeek.com/326965/what-is-the-powerd-process-and-why-is-it-running-on-my-mac/
76 https://medium.com/@boutnaru/macos-launchd-a6628195f6e7
75 https://keith.github.io/xcode-man-pages/powerd.1.html

https://eshop.macsales.com/blog/57756-use-the-macs-energy-saver-preference-pane/
https://www.howtogeek.com/326965/what-is-the-powerd-process-and-why-is-it-running-on-my-mac/
https://medium.com/@boutnaru/macos-launchd-a6628195f6e7
https://keith.github.io/xcode-man-pages/powerd.1.html


sandboxd (Sandbox Daemon)
“sandboxd” is the “Sandbox Daemon” which is responsible for performing services on behalf of
the Sandbox kernel extension79. It is a Mach-O binary located at “/usr/libexec/sandboxd” which
is started by “launchd”80 with the permissions of the “root” user.

Overall, the sandbox facility in MacOS allows applications to restrict access to operating system
resources. By doing so it helps in limiting the exposure in case of an exploitation of a
vulnerability. New processes inherit the sandbox from their parent81.

Thus, we can say that an app sandbox allows the restriction of access to user data/system
resources in order to contain damage if a MacOS application is compromised. This is achieved
by limiting the app access by entitlements82.

We can split the entitlements to different categories such as: hardware, network, file operations,
Application data and more. Let see two examples, one from the hardware category and one from
the network category. “com.apple.security.device.microphone” which indicates if the application
can use the microphone83. “com.apple.security.network.client” which indicates if the application
can open outgoing network connections84.

Lastly, if we want we can use the cli command “sandbox-exec” to execute an
application/command inside a sandbox85. A diagram showcasing the sandboxing concept is
shown below86.

86 https://cyberhoot.com/cybrary/sandboxing/
85 https://www.manpagez.com/man/1/sandbox-exec/
84 https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_security_network_client
83 https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_security_device_microphone
82 https://developer.apple.com/documentation/security/app_sandbox
81 https://www.manpagez.com/man/7/sandbox/
80 https://medium.com/@boutnaru/macos-launchd-a6628195f6e7
79 https://www.manpagez.com/man/8/sandboxd/

https://cyberhoot.com/cybrary/sandboxing/
https://www.manpagez.com/man/1/sandbox-exec/
https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_security_network_client
https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_security_device_microphone
https://developer.apple.com/documentation/security/app_sandbox
https://www.manpagez.com/man/7/sandbox/
https://medium.com/@boutnaru/macos-launchd-a6628195f6e7
https://www.manpagez.com/man/8/sandboxd/


fontd (Font Daemon)
“fontd” is the “Font Daemon” which is responsible for managing font registration on MacOS. It
makes fonts available to the system - as shown in the screenshot below87. “fontd” replaced
ATSServer from MacOS 10.688. By the way, AST stands for “Apple Type Services”.

Also, we can use “astutil” in order to register fonts using a system utility. Using the utility we
can queries the status of “fontd” or even shutting it down. Also, we can remove the “fontd”
system/user database, which can cause the loss of fonts89.

Overall, “fontd” is a Mach-O binary located at
“/System/Library/Frameworks/ApplicationServices.framework/Frameworks/ATS.framework/Su
pport/fontd”, which is started by “launchd”90 using the permissions of the logged on user.
Moreover, “fontd” hosts two services: “com.apple.FontObjectServer” and
“com.apple.FontServer”91.

91 https://thecyberwire.com/events/docs/IanBeer_JSS_Slides.pdf
90 https://medium.com/@boutnaru/macos-launchd-a6628195f6e7
89 https://www.manpagez.com/man/8/atsutil/
88 https://www.manpagez.com/man/8/fontd/
87 https://developer.apple.com/fonts/

https://thecyberwire.com/events/docs/IanBeer_JSS_Slides.pdf
https://medium.com/@boutnaru/macos-launchd-a6628195f6e7
https://www.manpagez.com/man/8/atsutil/
https://www.manpagez.com/man/8/fontd/
https://developer.apple.com/fonts/


gamecontrollerd (Game Controller Daemon)
“gamecontrollerd” is the “Game Controller Daemon'' which is responsible for arbitrating access
to hardware controllers between applications. It is being done by leveraging the GameController
framework. Also, it was introduced in OS X version 10.992.

Overall, by leveraging the GameController framework users can interact with apps using
virtual/physical game controllers. Among game controllers we can include Siri remote,
DualSense, keyboards, XBox and even racing wheels93.

Lastly, it is a Mach-O binary located at “/usr/libexec/gamecontrollerd”. It is started by
“launchd”94 with the permissions of the “_gamecontrollerd” user. We can find the user's game
controller settings in the following file ~/Library/Preferences/com.apple.GameController.plist
(you should not edit this file directly).

94 https://medium.com/@boutnaru/macos-launchd-a6628195f6e7
93 https://developer.apple.com/documentation/gamecontroller
92 https://keith.github.io/xcode-man-pages/gamecontrollerd.8.html

https://medium.com/@boutnaru/macos-launchd-a6628195f6e7
https://developer.apple.com/documentation/gamecontroller
https://keith.github.io/xcode-man-pages/gamecontrollerd.8.html


auditd (Audit Log Management Daemon)
“auditd” is the audit log management daemon . It is responsible for managing the resulting audit
logs (like file integrity monitoring and access). “auditd” used the asl95 API for writing to the log
messages, thus only administrators and members of the audit review group can see them96.

Moreover, the default location for storing the audit logs is “/var/audit” while the configuration
files are stored by default at “/var/security”: audit_class (event class description - “man
aduit_class”), audit_control (audit system parameters -”man audit_control”), audit_event (event
description - “man audit_event”) and audit_warn (issues and warnings - man “audit_warn”).

Also, “auditd” is a Mach-O binary file located at “/usr/sbin/auditd”. It is started by “launchd”
and executes with the permission of the “root” user. The full command line used is “auditd -l”. It
is based on OpenBSM. Which is an implementation of Sun’s “Basic Security Module” (BSM)
audit API and file format. It defines a set of system calls and library interfaces in order to
manage audit logs. It was created originally for apple computers and now maintained by
volunteers (TrustedBSD). It has both user space/cli tools and a kernel portion97.

Apple relicensed OpenBSM under a BSD license to allow integration with FreeBSD and other
systems98. We can also go over the source code of the kernel portion as part of the XNU99. An
example of an audit log of executed commands in macOS is shown in the screenshot below100.

100 https://halilozturkci.com/mac-os-x-sistemlerde-audit-log-analizi/
99 https://github.com/apple-oss-distributions/xnu/blob/main/bsd/bsm/
98 http://www.trustedbsd.org/openbsm.html
97 https://github.com/openbsm/openbsm
96 https://nxmnpg.lemoda.net/8/auditd
95 https://developer.apple.com/library/archive/documentation/System/Conceptual/ManPages_iPhoneOS/man3/asl.3.html

https://halilozturkci.com/mac-os-x-sistemlerde-audit-log-analizi/
https://github.com/apple-oss-distributions/xnu/blob/main/bsd/bsm/
http://www.trustedbsd.org/openbsm.html
https://github.com/openbsm/openbsm
https://nxmnpg.lemoda.net/8/auditd
https://developer.apple.com/library/archive/documentation/System/Conceptual/ManPages_iPhoneOS/man3/asl.3.html

