
The Windows
Security Journey

Version 3.0
March-2024

By Dr. Shlomi Boutnaru

Created using Craiyon, AI Image Generator

https://www.craiyon.com/

Introduction..6
SID (Security Identifier)...7
SD (Security Descriptor)... 8
Securable Objects... 9
Privileges..10
SAM (Security Account Manager).. 11
Access Token...12
Primary Access Token.. 13
Impersonation Access Token... 14
SRM (Security Reference Monitor)...15
Job Object.. 16
ACL (Access Control List).. 17
DACL (Discretionary Access Control List)..18
SACL (System Access Control List)..19
Mandatory Integrity Control (MIC)..19
UAC (User Account Control).. 21
User Interface Privilege Isolation (UIPI)...22
File Virtualization... 23

Introduction
When starting to learn OS security I believe that there is a need for understanding multiple
technologies and concepts. Because of that I have decided to write a series of short writeups
aimed at providing the security vocabulary.

Overall, I wanted to create something that will improve the overall knowledge of Windows’
different security mechanisms included with Windows in writeups that can be read in 1-3 mins. I
hope you are going to enjoy the ride.

Lastly, you can follow me on twitter - @boutnaru (https://twitter.com/boutnaru). Also, you can
read my other writeups on medium - https://medium.com/@boutnaru. Lastly, You can find my
free eBooks at https://TheLearningJourneyEbooks.com.

Lets GO!!!!!!

https://twitter.com/boutnaru
https://medium.com/@boutnaru
https://thelearningjourneyebooks.com

SID (Security Identifier)
The goal of an SID is to uniquely identify a security principal/group. When talking about a
security principal we mean any entity that can authenticate to the operating system like:
user/computer account or a thread/process that runs with the security context of one of those.
Every time a user is logged on the system creates an access token for that user (more on that in a
future writeup). This access token holds the user’s SID, privileges and the SIDs for any groups
that the user is part of1.

Moreover, there is a specific format for an SID. We can split it into three main parts: revision,
identifier authority and sub authorities. Revision, which specifies the version of the SID
structure. Identifier authority, which specifies the highest level of authority that can issue an SID
for a security principal. Sub authorities, which hold the most important information (can identify
a local computer/domain) and its last part is an RID (relative identifier) that identifies a specific
user/group in a local computer/domain - as shown in the diagram below2.

An example of some well-known SIDs are: “S-1-1-0” (group that includes all users), “S-1-0-0”
(aka NULL SID, a group with no members). They are called “Universal well-known SIDs”3.
Also, there are well-known RIDs such as: 500 (Administrator), 501 (Guest). Since Windows
2008/Vista most of the system files are owned by the “TrustedInstaller” SID, in order to prevent
a process running with Administrator/Local System permissions to overwrite the OS files4.

Lastly, there are also “Capability SIDs” which grant access to specific resources (like cameras,
documents, location and more). Those type of SIDs that the system is aware of are stored in the
registry value “AllCachedCapabilities” under
“HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\SecurityManager\CapabilityClasses”5.

5 https://renenyffenegger.ch/notes/Windows/security/SID/index
4 https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/manage/understand-security-identifiers
3 https://learn.microsoft.com/en-us/windows/win32/secauthz/well-known-sids
2 https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-azod/ecc7dfba-77e1-4e03-ab99-114b349c7164
1 https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/manage/understand-security-identifiers

https://renenyffenegger.ch/notes/Windows/security/SID/index
https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/manage/understand-security-identifiers
https://learn.microsoft.com/en-us/windows/win32/secauthz/well-known-sids
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-azod/ecc7dfba-77e1-4e03-ab99-114b349c7164
https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/manage/understand-security-identifiers

SD (Security Descriptor)
The goal of a security descriptor (SD) is to hold the security information that is related with a
specific securable object. Examples for securable objects are: file, folder, network share, printer,
registry key, synchronization object, active directory objects and more. The structure which
describes a SD is defined in “winnt.h” and is named “SECURITY_DESCRIPTOR”6.

Overall, every object created by the “Object Manager” in Windows has a SD. Each objects has
an header with different fields (like object name, reference count, object type and more) one of
them is the security descriptor7. You can see an illustration of that in the diagram below8.

Moreover, we can think about an SD as containing four main fields: an owner, group, DACL
(Discretionary Access Control List) and SACL (System Access Control List) . DACL is used for
allowing/denying permissions which SACL is used for auditing9. The description of each entity
in the structure is stored in the form of an SID (Security Identifier). More on those in future
writeups.

Lastly, the “SECURITY_DESCRIPTOR” is a compact binary representation of the security
associated with a specific object. Because it is not convenient to use it, there is a text-based form
for representing it. This format is called SSDL (Security Descriptor Description Language). It
has specific text tokens in order to describe: access rights, user accounts, user-mode drivers and
more10.

10 https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/sddl-for-device-objects?redirectedfrom=MSDN
9 https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-azod/ec52bde3-9c86-4484-9080-e72148a2d53b
8 https://www.tophertimzen.com/resources/cs407/slides/week02_01-KernelObjects.html#slide16
7 https://www.geoffchappell.com/studies/windows/km/ntoskrnl/inc/ntos/ob/object_header/index.htm
6 https://learn.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-security_descriptor

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/sddl-for-device-objects?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-azod/ec52bde3-9c86-4484-9080-e72148a2d53b
https://www.tophertimzen.com/resources/cs407/slides/week02_01-KernelObjects.html#slide16
https://www.geoffchappell.com/studies/windows/km/ntoskrnl/inc/ntos/ob/object_header/index.htm
https://learn.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-security_descriptor

Securable Objects
Overall, “securable objects” are Windows objects11 that can have a “security descriptor”12. All
named Windows objects are securable. There are also unnamed objects which are securable like
processes and threads13 - as shown in the screenshot below.

Moreover, each securable object has specific elements that are elaborated next. An owner’s
(user/group) SID14. A DCAL (Discretionary Access Control List) which contains a list of
group/user SIDs and the access rights each of them has - as shown in the screenshot below in the
permissions tab. A SACL (System Access Control List) which states what logging/auditing
should be done when accessing the object. Also, there is a group associated with the object
which is for POSIX compatibility only15.

Lastly, examples of securable objects (but not limited to) are: files, directories, desktops,
processes, threads, named pipes, mailslots, network shares, printers, private objects, events,
semaphores, WMI namespaces and waitable timers and windows stations16..

16 http://winapi.freetechsecrets.com/win32/WIN32Securable_Objects.htm
15 https://renenyffenegger.ch/notes/Windows/development/objects/securable/index
14 https://medium.com/@boutnaru/windows-security-sid-security-identifier-d5a27567d4e5
13 https://learn.microsoft.com/en-us/windows/win32/secauthz/securable-objects
12 https://medium.com/@boutnaru/windows-security-security-descriptor-sd-ba95b8fa048a
11 https://medium.com/@boutnaru/windows-objects-2c289da600bf

http://winapi.freetechsecrets.com/win32/WIN32Securable_Objects.htm
https://renenyffenegger.ch/notes/Windows/development/objects/securable/index
https://medium.com/@boutnaru/windows-security-sid-security-identifier-d5a27567d4e5
https://learn.microsoft.com/en-us/windows/win32/secauthz/securable-objects
https://medium.com/@boutnaru/windows-security-security-descriptor-sd-ba95b8fa048a
https://medium.com/@boutnaru/windows-objects-2c289da600bf

Privileges
Privileges are rights given for a specific account (user/group) which allows performing different
system related operations on the local computer. Think about: changing the system time, loading
a device driver, shutting down the system and more. There is a difference between access rights
to privileges17.

Thus, we can say that privileges control the access to system resources/system related tasks
while access rights control access to securable objects (such as files, directories, registry keys
and more). We assign privileges to user/group accounts whereas access rights are granted as part
of DACLs.

Moreover, the operating system represents a privilege in a category of “User Rights
Assignments”. We can modify them using the “Local Group Policy” (or the “Group Policy”)
MMC snap-in18 - as shown in the screenshot below.

Lastly, the privileges are defined using constants in the following pattern
“SE_[DESCRIPTION]_NAME” and also has a text format which is in the pattern of
“Se[DESCRIPTION]Privilege”. A couple of examples are:
“SE_CREATE_PAGEFILE_NAME”\”SeCreatePagefilePrivilege” which enables creating a new
pagefile, “SE_DEBUG_NAME”\”SeDebugPrivilege” which is required for debugging/adjusting
the memory of a processes owned by a different user account and
“SE_LOAD_DRIVER_NAME”\”SeLoadDriverPrivilege” which is required to load/unload a
device driver (it is also the one marked in the screenshot below).

18 https://learn.microsoft.com/en-us/windows/win32/secauthz/privilege-constants
17 https://learn.microsoft.com/en-us/windows/win32/secauthz/privileges

https://learn.microsoft.com/en-us/windows/win32/secauthz/privilege-constants
https://learn.microsoft.com/en-us/windows/win32/secauthz/privileges

SAM (Security Account Manager)
SRM (Security Account Manager) is the DB in Windows that stores the user names/passwords of
the local user defined on the system. By configuring SAM we allow users to authenticate to the
local system19.

Moreover, the SAM file is located at “%windir%\System32\config\SAM” which is mounted in
the registry in the following “HKEY_LOCAL_MACHINE\SAM”20. In order to view its content
we need to run as SYSTEM and Local Administrator is not enough - as shown in the screenshot
below.

Thus, different hashes can be stored in SAM like LM hash and NTLM hash (more on those and
others in future writeups). We can think about SAM as the equivalent of “/etc/passwd”,
“/etc/shadow” and “/etc/group” files under Linux.

Because Microsoft wanted to increase the security around the hashes stored in SAM they have
created SYSKEY. It uses a system key for encrypting to protect the account password
information stored in the SAM. The system key can be saved locally, on a floppy disk or stored
locally but protected by an admin password21. Lastly, SYSKEY support was removed from
Windows 10 version 170922.

22 https://learn.microsoft.com/en-us/troubleshoot/windows-server/identity/syskey-exe-utility-is-no-longer-supported
21 https://learn.microsoft.com/en-us/windows-server/security/kerberos/system-key-utility-technical-overview

20https://viperone.gitbook.io/pentest-everything/everything/everything-active-directory/credential-access/credential-dumping/secu
rity-account-manager-sam

19 https://www.calcomsoftware.com/what-is-windows-security-accounts-manager/

https://learn.microsoft.com/en-us/troubleshoot/windows-server/identity/syskey-exe-utility-is-no-longer-supported
https://learn.microsoft.com/en-us/windows-server/security/kerberos/system-key-utility-technical-overview
https://viperone.gitbook.io/pentest-everything/everything/everything-active-directory/credential-access/credential-dumping/security-account-manager-sam
https://viperone.gitbook.io/pentest-everything/everything/everything-active-directory/credential-access/credential-dumping/security-account-manager-sam
https://www.calcomsoftware.com/what-is-windows-security-accounts-manager/

Access Token
“Access Token” is an object which represents the access rights/privileges/identity for a specific
process/thread. The operating system uses the access token in order to identify the user when a
specific thread interacts with a securable object23 or when it tries to perform a system task (that
requires some kind of privilege)24.

Thus, if a user authenticates to a system, the Local Security Authority (LSA) creates an access
token (to be accurate it is the primary access token, as described in more detail later). It contains
the SID of the user, the SIDs of all the groups the user belongs to, a list of privileges, the SID of
the owner (user/group), the primary group (for POSIX subsystems), default DACL, source
(process that caused the token to be created - RPC/LAN Manager/Session Manager/etc), type
(primary/impersonation), impersonation level, restricting SIDs, Terminal service session ID (if
relevant), session reference, SandBox inert, audit policy and origin - as shown below25.

Moreover, using different Win32 API functions we can read/manipulate access tokens. As
example we can use “OpenProcessToken”26 or “OpenThreadToken”27 to get a handle to the
access token of the process/thread. Also, we can use “DuplicateTokenEx”28 for duplicating the
access token of the current process and “CreateProcessWithTokenW”29 which allows creation of
a process with a specified token. The access token is stored in kernel mode using “struct
_TOKEN”30.

30https://www.ired.team/miscellaneous-reversing-forensics/windows-kernel-internals/how-kernel-exploits-abuse-tokens-for-privil
ege-escalation

29 https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createprocesswithtokenw
28 https://learn.microsoft.com/en-us/windows/win32/api/securitybaseapi/nf-securitybaseapi-duplicatetokenex
27 https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openthreadtoken
26 https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocesstoken
25 https://learn.microsoft.com/pt-pt/previous-versions/windows/server/cc783557(v=ws.10)
24 https://learn.microsoft.com/en-us/windows/win32/secauthz/access-tokens
23 https://medium.com/@boutnaru/windows-securable-objects-311a9d6c83ad

https://www.ired.team/miscellaneous-reversing-forensics/windows-kernel-internals/how-kernel-exploits-abuse-tokens-for-privilege-escalation
https://www.ired.team/miscellaneous-reversing-forensics/windows-kernel-internals/how-kernel-exploits-abuse-tokens-for-privilege-escalation
https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createprocesswithtokenw
https://learn.microsoft.com/en-us/windows/win32/api/securitybaseapi/nf-securitybaseapi-duplicatetokenex
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openthreadtoken
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocesstoken
https://learn.microsoft.com/pt-pt/previous-versions/windows/server/cc783557(v=ws.10)?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/windows/win32/secauthz/access-tokens
https://medium.com/@boutnaru/windows-securable-objects-311a9d6c83ad

Primary Access Token
Overall, there are two types of access tokens31 - as stated in the type field of the access token.
Those are “Primary Token” and “Impersonation Token”. In this writeup I am going to focus on
the first one.

A primary token can only be associated with a process. Processes inherit a copy of the parent’s
process primary token32. Due to that, when a thread is attempting to access a securable object33

by default this token is checked (threads can have an impersonation token but that is for a
different writeup). Also, this token belongs to the user account that created the process34.

Thus, every process has a primary token that it gets from its parent process - as shown in the
diagram below35. Because primary tokens are associated with processes they are also known as
“Process Tokens”. We can also state that they are created while authenticating interactively36.

36 https://sensepost.com/blog/2022/abusing-windows-tokens-to-compromise-active-directory-without-touching-lsass/
35 https://i.blackhat.com/USA-20/Thursday/us-20-Burgess-Detecting-Access-Token-Manipulation.pdf
34 https://jsecurity101.medium.com/better-know-a-data-source-access-tokens-and-why-theyre-hard-to-get-7bc951eae0b9
33 https://medium.com/@boutnaru/windows-securable-objects-311a9d6c83ad
32 https://book.hacktricks.xyz/windows-hardening/windows-local-privilege-escalation/access-tokens
31 https://medium.com/@boutnaru/windows-security-access-token-81cd00000c64

https://sensepost.com/blog/2022/abusing-windows-tokens-to-compromise-active-directory-without-touching-lsass/
https://i.blackhat.com/USA-20/Thursday/us-20-Burgess-Detecting-Access-Token-Manipulation.pdf
https://jsecurity101.medium.com/better-know-a-data-source-access-tokens-and-why-theyre-hard-to-get-7bc951eae0b9
https://medium.com/@boutnaru/windows-securable-objects-311a9d6c83ad
https://book.hacktricks.xyz/windows-hardening/windows-local-privilege-escalation/access-tokens
https://medium.com/@boutnaru/windows-security-access-token-81cd00000c64

Impersonation Access Token
Overall, there are two types of access tokens37 - as stated in the type field of the access token.
Those are “Primary Token” and “Impersonation Token”. In this writeup I am going to focus on
the second one.

Basically, impersonation is a mechanism which allows server processes to run by using the
credentials of some client. Meaning using creaditails of another user than its primary token38.

Thus, when can that impersonation allow a thread to switch to a different security context. By
default, threads inherit the same security context as the primary token39 of the process40.

One of the main use-cases for impersonation is asking the a server to execute code on behalf of
the user performing a network authentication - as shown in the diagram below41. It can also be
used for cases where we want an application/process to have a thread running code with a
different security context (than the other threads). However, we need to be careful because all the
threads share the same memory space so one thread can hijack the execution flow of another.

41 https://i.blackhat.com/USA-20/Thursday/us-20-Burgess-Detecting-Access-Token-Manipulation.pdf
40 https://i.blackhat.com/USA-20/Thursday/us-20-Burgess-Detecting-Access-Token-Manipulation.pdf
39 https://medium.com/@boutnaru/windows-security-primary-access-token-e295a35796a9
38 https://medium.com/@boutnaru/windows-security-primary-access-token-e295a35796a9
37 https://medium.com/@boutnaru/windows-security-access-token-81cd00000c64

https://i.blackhat.com/USA-20/Thursday/us-20-Burgess-Detecting-Access-Token-Manipulation.pdf
https://i.blackhat.com/USA-20/Thursday/us-20-Burgess-Detecting-Access-Token-Manipulation.pdf
https://medium.com/@boutnaru/windows-security-primary-access-token-e295a35796a9
https://medium.com/@boutnaru/windows-security-primary-access-token-e295a35796a9
https://medium.com/@boutnaru/windows-security-access-token-81cd00000c64

SRM (Security Reference Monitor)
SRM (Security Reference Monitor) is a component that is part of the Windows executive (stored
in %systemroot%\System32\ntoskrnl.exe). SRM is responsible for implementing the
authorization system (together with LSA as shown in the diagram below). Also, SRM
implements the access check algorithm42.. This means it checks the access to different resources
by getting the access token43 of the subject and comparing it to the ACEs (Access Control Lists)
in the security descriptor of the securable object44.

Moreover, the routines that provide a direct interface with the SRM are those prefixed with
“Se”45. An example of such function is: “SeAccessCheck” which determines if the requested
access to an object can be granted46. If we want we can go over a reference implementation of
“SeAccessCheck” as part of ReacOS47.

Lastly, we can say that the “Object Manager” uses SRM to check if a specific process/thread has
the proper rights to execute a certain action on an object. Also, it is part of the flow when
implementing auditing functionality when objects are being accessed48.

48 https://cs.gmu.edu/~menasce/osbook/nt/sld034.html
47 https://github.com/reactos/reactos/blob/master/ntoskrnl/se/accesschk.c#L1966
46 https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-seaccesscheck
45 https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/windows-kernel-mode-security-reference-monitor
44 https://medium.com/@boutnaru/windows-securable-objects-311a9d6c83ad
43 https://medium.com/@boutnaru/windows-security-access-token-81cd00000c64
42 https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-azod/d28d536d-3973-4c8d-b2c9-989e3a8ba3c5

https://cs.gmu.edu/~menasce/osbook/nt/sld034.html
https://github.com/reactos/reactos/blob/master/ntoskrnl/se/accesschk.c#L1966
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-seaccesscheck
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/windows-kernel-mode-security-reference-monitor
https://medium.com/@boutnaru/windows-securable-objects-311a9d6c83ad
https://medium.com/@boutnaru/windows-security-access-token-81cd00000c64
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-azod/d28d536d-3973-4c8d-b2c9-989e3a8ba3c5

Job Object
By using a job object we can manage a group of processes as one unit. Thus, an operation
performed on a job object affects all the processes which are part of that job49.

Moreover, in order to create a job object we can use the Win32 API call “CreateJobObjectA”50.
When creating a job it has no processes associated with it, so we need to use the function
“AssignProcessToJobObject”51. Until Windows 8/Windows Server 2012 a process could be
associated with one job only. By the way, for getting an handle for an existing object we can use
the “OpenJobObjectA” function52.

Overall, by using jobs we can limit the usage of system resources by processes like: process
priority, time limit, working set, number of child processes, desktop creation, writing data to the
clipboard and more. For setting the limits we use the function “SetInformationJobObject”53.

Lastly, job objects are being used in sandboxes like in web browsers (shown in the screenshot
below) and are one of the building blocks of “Windows Containers''. There are also
named/unanmed, securable objects54 and shareable objects - as shown in the screenshot below
taken from Sysinternals’ “Process Explorer”55.

55 https://learn.microsoft.com/en-us/sysinternals/downloads/sysinternals-suite
54 https://medium.com/@boutnaru/windows-securable-objects-311a9d6c83ad
53 https://learn.microsoft.com/en-us/windows/win32/api/jobapi2/nf-jobapi2-setinformationjobobject
52 https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-openjobobjecta
51 https://learn.microsoft.com/en-us/windows/win32/api/jobapi2/nf-jobapi2-assignprocesstojobobject
50 https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createjobobjecta
49 https://learn.microsoft.com/en-us/windows/win32/procthread/job-objects

https://learn.microsoft.com/en-us/sysinternals/downloads/sysinternals-suite
https://medium.com/@boutnaru/windows-securable-objects-311a9d6c83ad
https://learn.microsoft.com/en-us/windows/win32/api/jobapi2/nf-jobapi2-setinformationjobobject
https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-openjobobjecta
https://learn.microsoft.com/en-us/windows/win32/api/jobapi2/nf-jobapi2-assignprocesstojobobject
https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createjobobjecta
https://learn.microsoft.com/en-us/windows/win32/procthread/job-objects

ACL (Access Control List)
ACL (Access Control List) is a list of ACEs (Access Control Entries). Every ACE identifies a
trustee (user account/group/logon session) and the relevant allowed/denied/audited access for
that trustee56.

Overall, there are two types of ACLs which are in use in Windows systems: DACL aka as
“Discretionary Access Control List” and SACL aka “System Access Control List”57. More
information about those types in future writeups. Those types of ACLs are part of the security
information stored as part of the “Security Descriptor”58 related to securable objects59 - as shown
in the diagram below60.

Moreover, every ACE has four main components. The first, the SID61 to whom the access
information in this ACE is relevant for. Second, a flag denoting the type of ACE
(deny/allow/audit). Third, flags regarding the inheritance of the specific ACE. Forth, an access
mask which is a 32 bit that describes the rights relevant for this ACE62.

Lastly, due to the fact we have DACL and SACL, usually when saying ACE we talk about the
first one and when saying System ACE we mean the second one.

62 https://book.hacktricks.xyz/windows-hardening/windows-local-privilege-escalation/acls-dacls-sacls-aces
61 https://medium.com/@boutnaru/windows-security-sid-security-identifier-d5a27567d4e5
60 https://developer.aliyun.com/article/747446
59 https://medium.com/@boutnaru/windows-securable-objects-311a9d6c83ad
58 https://medium.com/@boutnaru/windows-security-security-descriptor-sd-ba95b8fa048a
57 https://www.securew2.com/blog/windows-access-control-acl-dacl-sacl-ace
56 https://learn.microsoft.com/en-us/windows/win32/secauthz/access-control-lists

https://book.hacktricks.xyz/windows-hardening/windows-local-privilege-escalation/acls-dacls-sacls-aces
https://medium.com/@boutnaru/windows-security-sid-security-identifier-d5a27567d4e5
https://developer.aliyun.com/article/747446
https://medium.com/@boutnaru/windows-securable-objects-311a9d6c83ad
https://medium.com/@boutnaru/windows-security-security-descriptor-sd-ba95b8fa048a
https://www.securew2.com/blog/windows-access-control-acl-dacl-sacl-ace
https://learn.microsoft.com/en-us/windows/win32/secauthz/access-control-lists

DACL (Discretionary Access Control List)
In general DACL (Discretionary Access Control List) is an ACL63 which identifies the trustees
that allowed/denied access to a securable object64.Thus, if the securable object does not have any
DACL (Null) the SRM65 allows everyone full access to it. If the list of ACL is empty no one has
any access to the object66.

Moreover, when a thread tries to access a securable object, the system goes over the ACEs in the
DACL until it finds one that allows/denies the access (think about it like firewall rules). The
predefined order of ACEs are as follows: all explicit ACEs are before inherited ACEs and the
inherited ones are placed in the order in which they are inherited. By the way, in every level
access denied ACEs are placed before the access allowed ACEs ones67.

Lastly, for configuring a DACL using the UI we just go to the properties of the object and select
the “security tab”, there we can edit the DACL of that specific object - as shown in the
screenshot below. We can also use CLI tools like cacls.exe/icacls.exe (but that is for a different
writeup).

67 https://www.tenouk.com/ModuleH2.html
66 https://learn.microsoft.com/en-us/windows/win32/secauthz/dacls-and-aces
65 https://medium.com/@boutnaru/windows-security-srm-security-reference-monitor-d715f96d9fd6
64 https://medium.com/@boutnaru/windows-securable-objects-311a9d6c83ad
63 https://medium.com/@boutnaru/the-windows-security-journey-acl-access-control-list-b7d9a6fe4282

https://www.tenouk.com/ModuleH2.html
https://learn.microsoft.com/en-us/windows/win32/secauthz/dacls-and-aces
https://medium.com/@boutnaru/windows-security-srm-security-reference-monitor-d715f96d9fd6
https://medium.com/@boutnaru/windows-securable-objects-311a9d6c83ad
https://medium.com/@boutnaru/the-windows-security-journey-acl-access-control-list-b7d9a6fe4282

SACL (System Access Control List)
Overall, a SACL (System Access Control List) is an ACL68 which enables the administrators of a
system to audit attempts of accessing securable objects69. Every ACE (Access Control Entry)
defines the type of access attempt that causes to generate an audit trail while performed by a
trustee70.

Thus, an ACE as part of an SACL can emit an audit record when an access attempt is
failed/succeeds/both. The system writes audit messages to the security event log71. In order to
read/write object’s SACL the relevant thread/process should enable as part of its access token72

the “SE_SECURITY_NAME” privilege73.

Moreover, the “SE_SECURITY_NAME” privilege is defined as managing auditing and the
security log74. We can use “SetNamedSecurityInfoA”/”SetNamedSecurityInfoW”75 or
“GetNamedSecurityInfoA”/”GetNamedSecurityInfoW” in order to access the SACL. Those
functions enable the “SE_SECURITY_NAME” privilege.

Lastly, in order to configure an SACL on a securable object like a file/directory we go to its
properties and then we go to the “security tab”. In the “security tab” we need to press the
“Advanced” button - as shown in the screenshot below. In the advanced security setting we can
go to the “auditing tab” - also shown in the screenshot below.

75 https://learn.microsoft.com/en-us/windows/win32/api/aclapi/nf-aclapi-setnamedsecurityinfow
74 https://jeffpar.github.io/kbarchive/kb/188/Q188855/
73 https://medium.com/@boutnaru/windows-security-privileges-b8fe18cf3d5a
72 https://medium.com/@boutnaru/windows-security-access-token-81cd00000c64
71 https://learn.microsoft.com/en-us/windows/win32/secauthz/audit-generation
70 https://learn.microsoft.com/en-us/windows/win32/secauthz/access-control-lists
69 https://medium.com/@boutnaru/windows-securable-objects-311a9d6c83ad
68 https://medium.com/@boutnaru/the-windows-security-journey-acl-access-control-list-b7d9a6fe4282

https://learn.microsoft.com/en-us/windows/win32/api/aclapi/nf-aclapi-setnamedsecurityinfow
https://jeffpar.github.io/kbarchive/kb/188/Q188855/
https://medium.com/@boutnaru/windows-security-privileges-b8fe18cf3d5a
https://medium.com/@boutnaru/windows-security-access-token-81cd00000c64
https://learn.microsoft.com/en-us/windows/win32/secauthz/audit-generation
https://learn.microsoft.com/en-us/windows/win32/secauthz/access-control-lists
https://medium.com/@boutnaru/windows-securable-objects-311a9d6c83ad
https://medium.com/@boutnaru/the-windows-security-journey-acl-access-control-list-b7d9a6fe4282

Mandatory Integrity Control (MIC)
In general, “Mandatory Integrity Control” (MIC) has been added to Windows from Vista for
adding support of MAC (Mandatory Access Control) to running processes76. This is done using a
new attribute called “Integrity Level” (IL). MIC is designed to control access to securable
objects77. The mechanism works in conjunction with DACL78. It is important to know that MIC
evaluates access before the access check is made versus the object’s DACL, and itself is
implemented as ACEs (Access Control Entries) using special SIDs79.

Moreover, each security principal80 and any securable object is marked with an integrity level
which is aimed at determining their level of access/protection. In Windows we have different
integrity levels: “untrusted” (S-1-16-0), “low” (S-1-16-4096), “medium” (S-1-16-8192), “high”
(S-1-16-12288) and “system” (S-1-16-16384). By default, standard users are given an integrity
level of “medium” while elevated users get “high”. Also, objects which lack an integrity level
are treated as “medium”81.

Lastly, the integrity level SIDs (as shown above) are stored in the SACL82 of the secure object83.
The Windows security policy states that a process can’t interact with another process that has a
higher integrity level84, due to that it is also used by different sandbox implementations (like with
Web Browsers). By the way, the integrity level is stored in the access token85 of a process/thread
- as shown in the screenshot below.

85 https://medium.com/@boutnaru/windows-security-access-token-81cd00000c64
84 https://en.wikipedia.org/wiki/Mandatory_Integrity_Control
83 https://learn.microsoft.com/en-us/windows/win32/secauthz/mandatory-integrity-control
82 https://medium.com/@boutnaru/the-windows-security-journey-sacl-system-access-control-list-32488dcc80d7
81 https://book.hacktricks.xyz/windows-hardening/windows-local-privilege-escalation/integrity-levels
80 https://medium.com/@boutnaru/windows-security-sid-security-identifier-d5a27567d4e5
79 https://medium.com/@boutnaru/windows-security-sid-security-identifier-d5a27567d4e5
78 https://medium.com/@boutnaru/the-windows-security-journey-dacl-discretionary-access-control-list-c74545e472ec
77 https://medium.com/@boutnaru/windows-securable-objects-311a9d6c83ad
76 https://learn.microsoft.com/en-us/windows/win32/secauthz/mandatory-integrity-control

https://medium.com/@boutnaru/windows-security-access-token-81cd00000c64
https://en.wikipedia.org/wiki/Mandatory_Integrity_Control
https://learn.microsoft.com/en-us/windows/win32/secauthz/mandatory-integrity-control
https://medium.com/@boutnaru/the-windows-security-journey-sacl-system-access-control-list-32488dcc80d7
https://book.hacktricks.xyz/windows-hardening/windows-local-privilege-escalation/integrity-levels
https://medium.com/@boutnaru/windows-security-sid-security-identifier-d5a27567d4e5
https://medium.com/@boutnaru/windows-security-sid-security-identifier-d5a27567d4e5
https://medium.com/@boutnaru/the-windows-security-journey-dacl-discretionary-access-control-list-c74545e472ec
https://medium.com/@boutnaru/windows-securable-objects-311a9d6c83ad
https://learn.microsoft.com/en-us/windows/win32/secauthz/mandatory-integrity-control

UAC (User Account Control)
The goal of UAC (User Account Control) is to reduce the risk of malware by limiting the ability
of malicious code from running with administrator permissions. When UAC is used an
application the requests an access token86 with administrator permissions must prompt the user
for consent87 - as shown in the screenshot below.

UAC (User Account Control) provides MAC (Mandatory Access Control) which was introduced
as part of Windows Vista/Server 2008. Together with UIPI88 UAC is used to isolate between
applications with the same user on the same session. When a user tries to perform an operation
that requires admin access it will trigger UAC (if it's enabled). Examples of such operations (but
not limited to) are: executing an application as an administrator, changing system-wide settings,
installing a device driver, changing UAC settings, configuring windows update, opening the
registry editor, changing power setting and turning on/of Windows features89.

Moreover, when UAC is enabled when an administrator logs on to a system two separate access
tokens are created (standard access token and administrator access token). The difference
between them is that the administrative privileges and SIDs are removed from the standard one90.

Lastly, UAC is composed of several technologies in order to provide its capabilities, among them
are: file and registry virtualization, same desktop elevation, filtered token, UIPI, protected
internet explorer and installer detection91.

91 https://learn.microsoft.com/en-us/troubleshoot/windows-server/windows-security/disable-user-account-control
90 https://learn.microsoft.com/en-us/windows/security/application-security/application-control/user-account-control/how-it-works
89 https://en.wikipedia.org/wiki/User_Account_Control
88 https://medium.com/@boutnaru/windows-security-user-interface-privilege-isolation-uipi-db790ad173eb

87 https://medium.com/@boutnaru/the-windows-process-journey-consent-exe-consent-ui-for-administrative-applications-d8e6976e8e40

86 https://medium.com/@boutnaru/windows-security-access-token-81cd00000c64

https://learn.microsoft.com/en-us/troubleshoot/windows-server/windows-security/disable-user-account-control
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/user-account-control/how-it-works
https://en.wikipedia.org/wiki/User_Account_Control
https://medium.com/@boutnaru/windows-security-user-interface-privilege-isolation-uipi-db790ad173eb
https://medium.com/@boutnaru/the-windows-process-journey-consent-exe-consent-ui-for-administrative-applications-d8e6976e8e40
https://medium.com/@boutnaru/windows-security-access-token-81cd00000c64

User Interface Privilege Isolation (UIPI)
User Interface Privilege Isolation (UIPI) was introduced in Windows 2008/Vista with the goal of
mitigating “Shatter Attacks”. Those types of attacks leverage the Windows’s message passing
system which can be used to inject arbitrary commands/code to any application/service running
in the same session, those we are using a “message loop”92.

UIPI allows isolating processes running as a full administrator from processes running as an
account with lower permissions than an administrator on the same interactive desktop. UIPI is
specific to the windowing/graphic subsystem (aka Windows USER). Thus, a process with lower
privileges can’t perform operations on a process with higher privileges like: DLL injection,
thread hooks for attaching, journal hooks for attaching, use window messages API
(SendMessage/PostMessage) and more93.

However, there are still resources that are shared between processes at different privilege levels
like: clipboard, global atom table, desktop window and the desktop heap read-only shared
memory. Also, painting on a screen is not controlled using UIPI, so a lower privilege application
can paint over the surface region of a higher privilege application window - the GDI model does
not allow control over painting surfaces94.

Lastly, we can control the configuration of UIPI using the “EnableUIPI” value under the
“HKLM\Software\Microsoft\Windows\CurrentVersion\Policies\System\” registry path - as
shown in the screenshot below95. A value of “0” disables UIPI, and if the value is not present by
default it means UIPI is enabled96.

96 http://pferrie.epizy.com/papers/antidebug.pdf
95 https://www.tipandtrick.net/fix-third-party-input-language-method-editor-ime-issues-in-ie-and-windows-vista-by-disabling-uipi/
94 https://learn.microsoft.com/en-us/windows/win32/gdi/painting-and-drawing
93 https://learn.microsoft.com/en-us/previous-versions/aa905330(v=msdn.10)
92 https://www.slideserve.com/milek/shoot-the-messenger-win32-shatter-attacks-by-brett-moore

http://pferrie.epizy.com/papers/antidebug.pdf
https://www.tipandtrick.net/fix-third-party-input-language-method-editor-ime-issues-in-ie-and-windows-vista-by-disabling-uipi/
https://learn.microsoft.com/en-us/windows/win32/gdi/painting-and-drawing
https://learn.microsoft.com/en-us/previous-versions/aa905330(v=msdn.10)?redirectedfrom=MSDN
https://www.slideserve.com/milek/shoot-the-messenger-win32-shatter-attacks-by-brett-moore

File Virtualization
Due to security considerations (UAC enabled, it is also known as “UAC File Virtualization”) as
of Windows Vista it does allow standard (non-administrator) users to access/manipulate folders
(like “Program Files” and the “Windows” directory) or specific registry areas - as was allowed in
previous Windows versions. However, because there are legacy applications which expect doing
those operations Windows include “File and Registry Virtualization”97.

Thus, if we have an application running with-out administrative permissions and it tries to write
to “Program Files” it will be redirected to
“C:\Users\%username%\AppData\Local\VirtualStore\Program Files\” and the operation will
succeed98. Without the file virtualization the operation is going to fail - as shown in the
screenshot below. By the way, I have enabled the virtualization on “cmd.exe” using “Task
Manager”99.

99 https://www.experts-exchange.com/questions/28943516/What-is-UAC-Virtualization-in-the-Process-TASK-Manager.html
98 https://flylib.com/books/en/2.955.1.34/1/
97 https://www.c-sharpcorner.com/uploadfile/GemingLeader/windows-file-and-registry-virtualization/

https://www.experts-exchange.com/questions/28943516/What-is-UAC-Virtualization-in-the-Process-TASK-Manager.html
https://flylib.com/books/en/2.955.1.34/1/
https://www.c-sharpcorner.com/uploadfile/GemingLeader/windows-file-and-registry-virtualization/

