
The Linux
Kernel Data Structures

Journey
Version 2.0
April-2024

By Dr. Shlomi Boutnaru

Created using Craiyon, AI Image Generato

https://www.craiyon.com/

Introduction..3
struct list_head.. 4
struct hlist_head..5
struct hlist_node..6
struct llist_head... 7
struct llist_node...8
struct freelist_head..9
struct nsproxy..10
struct task_struct...11
struct mm_struct... 12
struct vm_area_struct... 13
struct therad_info.. 14
struct thread_struct...15

Introduction
When starting to read the source code of the Linux kernel I believe that they are basic data
structures that everyone needs to know about. Because of that I have decided to write a series of
short writeups aimed at providing the basic vocabulary and understanding for achieving that.

Overall, I wanted to create something that will improve the overall knowledge of Linux kernel in
writeups that can be read in 1-3 mins. I hope you are going to enjoy the ride.

Lastly, you can follow me on twitter - @boutnaru (https://twitter.com/boutnaru). Also, you can
read my other writeups on medium - https://medium.com/@boutnaru. Lastly, You can find my
free eBooks at https://TheLearningJourneyEbooks.com.

Lets GO!!!!!!

https://twitter.com/boutnaru
https://medium.com/@boutnaru
https://thelearningjourneyebooks.com

struct list_head
Overall, many times operating systems need to hold a list of data structures. In order reduce code
duplication the Linux’s kernel developers created a standard implementation of a
circular/doubly-linked list1. This implementation was included in kernel 2.1.452. At the
beginning “struct list_head” was declared in “/include/linux.list.h” until kernel version 2.6.36
when it was moved to “/include/linux/types.h”3.

Basically, “struct list_head” has two members. The first is “next” which is used to point to the
next element in the list. The second is “prev” which points to the previous element in the list. As
we can see the data is not included as part of this data structure, instead “struct list_head” is
contained inside the data structures of the linked list - as shown in the diagram below4.

Thus, in order to access the data from a specific “struct list_head” we can use the “container_of”
macro that casts a member of a structure out to the containing structure5. This is provided by the
“offsetof” macro6 that leverages the “__builtin_offsetof” extension of GCC7.

Moreover, the function/macros used to manipulate whole lists/single entries are part of “list.h”8.
In order to initialize a “struct list_head” we use the “LIST_HEAD” macro9. For adding an
element we can use “list_add” function to insert an entry after a specific head it is great for
implementing stacks10. Also, the “list_add_tail” function allows inserting a new entry before a
specific head, which is great for implementing queues11. Lastly, we can use the function
“list_del” in order to delete a specific element from a list12.

12 https://elixir.bootlin.com/linux/v6.4.10/source/include/linux/list.h#L146
11 https://elixir.bootlin.com/linux/v6.4.10/source/include/linux/list.h#L100
10 https://elixir.bootlin.com/linux/v6.4.10/source/include/linux/list.h#L86
9 https://elixir.bootlin.com/linux/v6.4.10/source/include/linux/list.h#L25
8 https://elixir.bootlin.com/linux/v6.4.10/source/include/linux/list.h#L14
7 https://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Offsetof.html
6 https://elixir.bootlin.com/linux/v6.4.10/source/include/linux/stddef.h#L16
5 https://elixir.bootlin.com/linux/v6.4.10/source/include/linux/container_of.h#L11
4 https://www.byteisland.com/linux-%E5%86%85%E6%A0%B8%E5%8F%8C%E5%90%91%E9%93%BE%E8%A1%A8/
3 https://elixir.bootlin.com/linux/v2.6.36/source/include/linux/types.h
2 https://elixir.bootlin.com/linux/2.1.45/source/include/linux/list.h
1 https://www.oreilly.com/library/view/linux-device-drivers/0596000081/ch10s05.html

https://elixir.bootlin.com/linux/v6.4.10/source/include/linux/list.h#L146
https://elixir.bootlin.com/linux/v6.4.10/source/include/linux/list.h#L100
https://elixir.bootlin.com/linux/v6.4.10/source/include/linux/list.h#L86
https://elixir.bootlin.com/linux/v6.4.10/source/include/linux/list.h#L25
https://elixir.bootlin.com/linux/v6.4.10/source/include/linux/list.h#L14
https://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Offsetof.html
https://elixir.bootlin.com/linux/v6.4.10/source/include/linux/stddef.h#L16
https://elixir.bootlin.com/linux/v6.4.10/source/include/linux/container_of.h#L11
https://www.byteisland.com/linux-%E5%86%85%E6%A0%B8%E5%8F%8C%E5%90%91%E9%93%BE%E8%A1%A8/
https://elixir.bootlin.com/linux/v2.6.36/source/include/linux/types.h
https://elixir.bootlin.com/linux/2.1.45/source/include/linux/list.h
https://www.oreilly.com/library/view/linux-device-drivers/0596000081/ch10s05.html

struct hlist_head
Overall, “struct hlist_head” is used (together with “struct hlist_node”) in the Linux kernel as part
of hash tables. As opposed to “struct list_head”13 “struct hlist_head” has only one data member
which is “first”14. It points to the first node of a double linked list of “struct hlist_node”15 - as
shown in the diagram below16.

Thus, we can say it enables the creation of a linked list with a single pointer list head. By doing
so, we lose the ability to access the tail in O(1)17. We can create such a list head using the macro
“HLIST_HEAD”18, as opposed to “LIST_HEAD” (for “struct list_head”). There are a couple of
functions that we can use to manipulate like “hlist_add_head” (adds a new entry at the
beginning of the hlist), “hlist_move_list” (moves a list from one list head to another) - by the
way those are not the only ones19.

Lastly, as with “struct list_head” also “struct hlist_head” is part of a double linked list, however
it is the head of the list that has only one pointer forward. Examples for using “struct hlist_head”
is for holding list of data flows that are passing through a tun/tap device20 and an open hash table
implementation21.

21 https://elixir.bootlin.com/linux/v6.4.12/source/drivers/gpu/drm/drm_hashtab.c#L115
20 https://elixir.bootlin.com/linux/v6.4.12/source/drivers/net/tun.c#L199
19 https://elixir.bootlin.com/linux/v6.4.10/source/include/linux/list.h#L851
18 https://elixir.bootlin.com/linux/v6.4.10/source/include/linux/list.h#L851
17 https://elixir.bootlin.com/linux/v6.4.10/source/include/linux/list.h#L844
16 https://linux.laoqinren.net/kernel/hlist/
15 https://elixir.bootlin.com/linux/v6.4.10/source/include/linux/types.h#L192
14 https://elixir.bootlin.com/linux/v6.4.10/source/include/linux/types.h#L188
13 https://medium.com/@boutnaru/the-linux-kernel-data-strctures-journey-struct-list-head-87fa91a5ce1c

https://elixir.bootlin.com/linux/v6.4.12/source/drivers/gpu/drm/drm_hashtab.c#L115
https://elixir.bootlin.com/linux/v6.4.12/source/drivers/net/tun.c#L199
https://elixir.bootlin.com/linux/v6.4.10/source/include/linux/list.h#L851
https://elixir.bootlin.com/linux/v6.4.10/source/include/linux/list.h#L851
https://elixir.bootlin.com/linux/v6.4.10/source/include/linux/list.h#L844
https://linux.laoqinren.net/kernel/hlist/
https://elixir.bootlin.com/linux/v6.4.10/source/include/linux/types.h#L192
https://elixir.bootlin.com/linux/v6.4.10/source/include/linux/types.h#L188
https://medium.com/@boutnaru/the-linux-kernel-data-strctures-journey-struct-list-head-87fa91a5ce1c

struct hlist_node
As mentioned in the writeup about “struct hlist_head”22 as opposed to “struct list_head” in which
all the elements in the linked list are from the same type, in the case of an “hlist” we also have
“struct hlist_node” - as shown in the diagram below23.

Moreover, “struct hlist_node” has two fields: “next” and “pprev”. “next” points to the next node
in the linked list, while “pprev” points to the previous node in the linked list. We can find the
declaration of this data structure in the Linux source code in the following location
“/include/linux/types.h”24.

Also, as of kernel 6.5 this data structure is reference in 505 files across the Linux source code as
part of different components like: filesystems, networking stack, gpu drivers, memory
management and more25.

Lastly, we can use different functions to manipulate “hlist” nodes. “hlist_del” which deletes a
“struct hlist_node” from its list26. “hlist_add_before” which adds a new entry before the one
specified27. “hlist_add_behind” which adds a new entry after the specific one28. Of course those
are not the only functions/macros that we can use, you can find more of them in
“/include/linux/list.h”29.

29 https://elixir.bootlin.com/linux/v6.5/source/include/linux/list.h
28 https://elixir.bootlin.com/linux/v6.5/source/include/linux/list.h#L951
27 https://elixir.bootlin.com/linux/v6.5/source/include/linux/list.h#L951
26 https://elixir.bootlin.com/linux/v6.5/source/include/linux/list.h#L905
25 https://elixir.bootlin.com/linux/v6.5/A/ident/hlist_node
24 https://elixir.bootlin.com/linux/v6.5/source/include/linux/types.h#L198
23 https://www.freesion.com/article/2435513265/
22 https://medium.com/@boutnaru/the-linux-kernel-data-strctures-journey-struct-list-head-87fa91a5ce1c

https://elixir.bootlin.com/linux/v6.5/source/include/linux/list.h
https://elixir.bootlin.com/linux/v6.5/source/include/linux/list.h#L951
https://elixir.bootlin.com/linux/v6.5/source/include/linux/list.h#L951
https://elixir.bootlin.com/linux/v6.5/source/include/linux/list.h#L905
https://elixir.bootlin.com/linux/v6.5/A/ident/hlist_node
https://elixir.bootlin.com/linux/v6.5/source/include/linux/types.h#L198
https://www.freesion.com/article/2435513265/
https://medium.com/@boutnaru/the-linux-kernel-data-strctures-journey-struct-list-head-87fa91a5ce1c

struct llist_head
Basically, “struct llist_head” is the head of a lock-less NULL terminated linked list30. Lock-less
means that the data structure can be modified/accessed by multiple code flows without the need
of locking. Moreover, “struct llist_head” is defined in the Linux source code in the following
location “/include/linux/llist.h”31 and not in “/include/linux/list.h” as we saw with “struct
list_head”32 and “struct hlist_head”33. As we can see in the source code it has only one field
“first” of type “struct llist_node” which points to the list’s first node.

The cases in which locking is not needed are as follows. First, if we have multiple
producers/consumers the producers can use “llist_add”34 and the consumers can simultaneously
“llist_del_all”35 without locking. Second, in case of a single consumer which can use
“llist_del_first”36 while multiple producers can use “llist_add”37.

However, locking is needed in the following case. If we have multiple consumers and one is
calling “llist_del_first” we can’t simultaneously call “llist_del_first”/”llist_del_all” without a
lock38.

Thus, we can say that the lockless property of “llist” cases a reduce in functionality. The
limitations as described above are: adding elements only at the start of the list and removing the
first element/all elements39. A table that summarizes all the cases which were taken from the
source code comments is shown below40. Lastly, as of kernel version 6.5 “struct llist_head” is
referenced in 46 code files41.

41 https://elixir.bootlin.com/linux/v6.5/C/ident/llist_head
40 https://elixir.bootlin.com/linux/v6.5/source/include/linux/llist.h#L25
39 https://stackoverflow.com/questions/38771637/add-to-tail-of-lock-less-list
38 https://elixir.bootlin.com/linux/v6.5/source/include/linux/llist.h#L14
37 https://elixir.bootlin.com/linux/v6.5/source/include/linux/llist.h#L7
36 https://elixir.bootlin.com/linux/v6.5/source/lib/llist.c#L53
35 https://elixir.bootlin.com/linux/v6.5/source/include/linux/llist.h#L237
34 https://elixir.bootlin.com/linux/v6.5/source/include/linux/llist.h#L219
33 https://medium.com/@boutnaru/the-linux-kernel-data-strcture-journey-struct-hlist-head-19f4ceb71295
32 https://medium.com/@boutnaru/the-linux-kernel-data-strctures-journey-struct-list-head-87fa91a5ce1c
31 https://elixir.bootlin.com/linux/v6.5/source/include/linux/llist.h#L56
30 https://elixir.bootlin.com/linux/v6.5/source/include/linux/llist.h#L60

https://elixir.bootlin.com/linux/v6.5/C/ident/llist_head
https://elixir.bootlin.com/linux/v6.5/source/include/linux/llist.h#L25
https://stackoverflow.com/questions/38771637/add-to-tail-of-lock-less-list
https://elixir.bootlin.com/linux/v6.5/source/include/linux/llist.h#L14
https://elixir.bootlin.com/linux/v6.5/source/include/linux/llist.h#L7
https://elixir.bootlin.com/linux/v6.5/source/lib/llist.c#L53
https://elixir.bootlin.com/linux/v6.5/source/include/linux/llist.h#L237
https://elixir.bootlin.com/linux/v6.5/source/include/linux/llist.h#L219
https://medium.com/@boutnaru/the-linux-kernel-data-strcture-journey-struct-hlist-head-19f4ceb71295
https://medium.com/@boutnaru/the-linux-kernel-data-strctures-journey-struct-list-head-87fa91a5ce1c
https://elixir.bootlin.com/linux/v6.5/source/include/linux/llist.h#L56
https://elixir.bootlin.com/linux/v6.5/source/include/linux/llist.h#L60

struct llist_node
As mentioned in the writeup about “struct llist_head”42 as like with “struct hlist_head”43 with
“llist” we also have a data structure for the node which is “struct llist_node”.

Overall, both “struct llist_head”44 and “struct llist_node”45 are defined in the Linux source code
at “/include/linux/llist.h”. Also, they both have a single field of type “struct llist_node” - as
shown in the screenshot below.

Thus, although probably we could use the same data structure or use a union it is better to use
different ones for different parts of the linked list. In case of a double linked list there is no
choice cause the “next”/”prev” can point to a head or to a node46.

Moreover, like with other linked list data structures (which are part of the Linux kernel) we use
the “container_of” macro to get the “struct” holding of the “llist” entry47. For more operations
on “llist” (like “llist_add_batch”, “llist_empty” and “llist_for_each_entry”) we can check out
“/include/linux/llist.h”.

Lastly, “llist” is the lockless, NULL-terminated, singly-linked list implementation for the Linux
kernel48. As of kernel version 6.5.8 “struct llist_node” is referenced in 97 code files49.

49 https://elixir.bootlin.com/linux/v6.5.8/A/ident/llist_node
48 https://drgn.readthedocs.io/en/latest/helpers.html
47 https://elixir.bootlin.com/linux/v6.5/source/include/linux/llist.h#L82
46 https://stackoverflow.com/questions/38748693/why-does-linux-kernel-lock-less-list-have-head-and-node-structs
45 https://elixir.bootlin.com/linux/v6.5/source/include/linux/llist.h#L56
44 https://elixir.bootlin.com/linux/v6.5/source/include/linux/llist.h#L56
43 https://medium.com/@boutnaru/the-linux-kernel-data-strcture-journey-struct-hlist-head-19f4ceb71295
42 https://medium.com/@boutnaru/the-linux-kernel-data-strcture-journey-struct-llist-head-e6d33551c8fe

https://elixir.bootlin.com/linux/v6.5.8/A/ident/llist_node
https://drgn.readthedocs.io/en/latest/helpers.html
https://elixir.bootlin.com/linux/v6.5/source/include/linux/llist.h#L82
https://stackoverflow.com/questions/38748693/why-does-linux-kernel-lock-less-list-have-head-and-node-structs
https://elixir.bootlin.com/linux/v6.5/source/include/linux/llist.h#L56
https://elixir.bootlin.com/linux/v6.5/source/include/linux/llist.h#L56
https://medium.com/@boutnaru/the-linux-kernel-data-strcture-journey-struct-hlist-head-19f4ceb71295
https://medium.com/@boutnaru/the-linux-kernel-data-strcture-journey-struct-llist-head-e6d33551c8fe

struct freelist_head
Overall, when managing the memory of our own application (like in cases we don’t have
garbage collection) it is an advantage to reuse objects instead of freeing them completely. Thus,
when using dynamically allocated memory we can use the space of objects which are not needed
anymore instead of allocating more memory - this concept is called a freelist50. The concept was
adopted from a post titled “Solving the ABA Problem for Lock-Free Free Lists”51.

Thus, “struct freelist_head” is the list head of a CAS (Compare-and-Swap) lock-free list - the
semantics of a typical implementation of CAS is shown below52. Assuming nodes are never freed
until after the free list is destroyed - it is simple and correct53. “struct freelist_head” has only one
member called “head” which points to a “struct freelist_node”54.

Lastly, as of kernel version 6.5.8 “struct freelist_head” is referenced in two header files beside its
declaration55. It is used with “kretprobes”56 and “rethooks” which a is a return hooking
mechanism with list-based shadow stack57. By the way, since kernel version 6.7 “struct
freelist_head” is not used any more58 so the last relevant kernel version for it is 6.6.1659.

59 https://elixir.bootlin.com/linux/v6.6.16/A/ident/freelist_head
58 https://elixir.bootlin.com/linux/v6.7/A/ident/freelist_head
57 https://elixir.bootlin.com/linux/v6.6.16/source/include/linux/rethook.h#L3
56 https://medium.com/@boutnaru/linux-instrumentation-part-3-kretprobes-return-probes-bbbcacfd4289
55 https://elixir.bootlin.com/linux/v6.5.8/A/ident/freelist_head
54 https://elixir.bootlin.com/linux/v6.5.8/source/include/linux/freelist.h#L23
53 https://elixir.bootlin.com/linux/v6.5.8/source/include/linux/freelist.h#L10
52 https://www.embedded.com/is-lock-free-programming-practical-for-multicore/
51 https://moodycamel.com/blog/2014/solving-the-aba-problem-for-lock-free-free-lists
50 https://academic-accelerator.com/encyclopedia/free-list

https://elixir.bootlin.com/linux/v6.6.16/A/ident/freelist_head
https://elixir.bootlin.com/linux/v6.7/A/ident/freelist_head
https://elixir.bootlin.com/linux/v6.6.16/source/include/linux/rethook.h#L3
https://medium.com/@boutnaru/linux-instrumentation-part-3-kretprobes-return-probes-bbbcacfd4289
https://elixir.bootlin.com/linux/v6.5.8/A/ident/freelist_head
https://elixir.bootlin.com/linux/v6.5.8/source/include/linux/freelist.h#L23
https://elixir.bootlin.com/linux/v6.5.8/source/include/linux/freelist.h#L10
https://www.embedded.com/is-lock-free-programming-practical-for-multicore/
https://moodycamel.com/blog/2014/solving-the-aba-problem-for-lock-free-free-lists
https://academic-accelerator.com/encyclopedia/free-list

struct nsproxy
Overall, “struct nsproxy” (Namespace proxy) is a kernel data structure that contains a pointer to
all per-process namespaces60 like: mount (fs), uts, network, sysvipc and more. The PID
namespace61 is an exception because the field “pid_ns_for_children” is a pointer for the
namespace information that the children will use62. By the way we can retrieve the PID
namespace of a process/task using the function “task_active_pid_ns”63.

Moreover, “struct nsproxy” is defined in “/include/linux/nsproxy.h”64. The “count” field contains
the number of tasks holding a reference. “uts_ns” which holds a pointer to the information
regarding the process UTS namespace65. “ipc_ns” which holds a pointer to the information
regarding the process IPC namespace66. “mnt_ns” which holds a pointer to the information
regarding the process mount namespace67.

Also, “net_ns” which holds a pointer to the information regarding the process mount
namespace68. “time_ns” which holds a pointer to the information regarding the process time
namespace69. “time_ns_for_children” is a pointer for the time namespace information that the
children will use. “cgroup_ns” which holds a pointer to the information regarding the process
cgroup namespace70.

Lastly, “struct nsproxy” is shared by tasks that share all namespaces. When a single namespace is
cloned/unshared (like if using the clone/setns()/unshare() syscalls) the data structure is copied71.
We can get to if from “struct task_struct” of the current process - as shown in the diagram
below72. By the way, the user namespace information is stored in “struct cred”.

72 https://www.schutzwerk.com/en/blog/linux-container-namespaces05-kernel/
71 https://elixir.bootlin.com/linux/v6.4.10/source/include/linux/nsproxy.h#L27
70 https://medium.com/@boutnaru/linux-cgroups-control-groups-part-1-358c636ffde0
69 https://medium.com/@boutnaru/linux-namespaces-time-namespace-part-3-1314b4c9cd32
68 https://medium.com/@boutnaru/linux-namespaces-network-namespace-part-3-7f8f8e06fef3
67 https://medium.com/@boutnaru/linux-namespaces-mount-namespace-fca1e47d7a88
66 https://medium.com/@boutnaru/linux-namespaces-ipc-namespace-927f01cbcf3d
65 https://medium.com/@boutnaru/linux-namespaces-uts-part-2-6073eacc82ae
64 https://elixir.bootlin.com/linux/v6.4.10/source/include/linux/nsproxy.h#L31
63 https://elixir.bootlin.com/linux/v6.4.10/source/kernel/pid.c#L507
62 https://elixir.bootlin.com/linux/v6.4.10/source/include/linux/nsproxy.h#L16
61 https://medium.com/@boutnaru/linux-namespaces-pid-namespace-e7e22f96ac3d
60 https://systemweakness.com/linux-namespaces-part-1-dcee9c40fb68

https://www.schutzwerk.com/en/blog/linux-container-namespaces05-kernel/
https://elixir.bootlin.com/linux/v6.4.10/source/include/linux/nsproxy.h#L27
https://medium.com/@boutnaru/linux-cgroups-control-groups-part-1-358c636ffde0
https://medium.com/@boutnaru/linux-namespaces-time-namespace-part-3-1314b4c9cd32
https://medium.com/@boutnaru/linux-namespaces-network-namespace-part-3-7f8f8e06fef3
https://medium.com/@boutnaru/linux-namespaces-mount-namespace-fca1e47d7a88
https://medium.com/@boutnaru/linux-namespaces-ipc-namespace-927f01cbcf3d
https://medium.com/@boutnaru/linux-namespaces-uts-part-2-6073eacc82ae
https://elixir.bootlin.com/linux/v6.4.10/source/include/linux/nsproxy.h#L31
https://elixir.bootlin.com/linux/v6.4.10/source/kernel/pid.c#L507
https://elixir.bootlin.com/linux/v6.4.10/source/include/linux/nsproxy.h#L16
https://medium.com/@boutnaru/linux-namespaces-pid-namespace-e7e22f96ac3d
https://systemweakness.com/linux-namespaces-part-1-dcee9c40fb68

struct task_struct
Every operating system has a data structure that represents a “process73 object” (generally called
PCB - Process Control Block). By the way, “task_struct” is the PCB in Linux (it is also the TCB,
meaning the Thread Control Block). As an example, a diagram that shows two processes
opening the same file and the relationship between the two different “task_strcut” structures is
shown below.

Overall, we can say that “task_struct” holds the data an operating system needs about a specific
process. Among those data elements are: credentials ,priority, PID (process ID), PPID (parent
process ID), list of open resources, memory space range information, namespace information74,
kprobes75 instances and more.

Moreover, If you want to go over all of data elements I suggest going through the definition of
“task_strcut” as part of the Linux source code76. Also, fun fact is that in kernel 6.2-rc1
“task_strcut” is referenced in 1398 files77.

Lastly, familiarity with “task_struct” can help a lot with tracing and debugging tasks as shown in
the online book “Dynamic Tracing with DTrace & SystemTap”78. Also, it is very handy when
working with bpftrace. For example sudo bpftrace -e ‘kfunc:hrtimer_wakeup {
printf(“%s:%d\n”,curtask->comm,curtask->pid); }’, which prints the pid and the process
name of all processes calling the kernel function hrtimer_wakeup79.

79 https://medium.com/@boutnaru/the-linux-process-journey-pid-0-swapper-7868d1131316
78 https://myaut.github.io/dtrace-stap-book/kernel/proc.html
77 https://elixir.bootlin.com/linux/v6.2-rc1/A/ident/task_struct
76 https://elixir.bootlin.com/linux/v6.2-rc1/source/include/linux/sched.h#L737
75 https://medium.com/@boutnaru/linux-instrumentation-part-2-kprobes-b089092c4cff
74 https://medium.com/system-weakness/linux-namespaces-part-1-dcee9c40fb68
73 https://medium.com/@boutnaru/linux-processes-part-1-introduction-283f5b5b4197

https://medium.com/@boutnaru/the-linux-process-journey-pid-0-swapper-7868d1131316
https://myaut.github.io/dtrace-stap-book/kernel/proc.html
https://elixir.bootlin.com/linux/v6.2-rc1/A/ident/task_struct
https://elixir.bootlin.com/linux/v6.2-rc1/source/include/linux/sched.h#L737
https://medium.com/@boutnaru/linux-instrumentation-part-2-kprobes-b089092c4cff
https://medium.com/system-weakness/linux-namespaces-part-1-dcee9c40fb68
https://medium.com/@boutnaru/linux-processes-part-1-introduction-283f5b5b4197

struct mm_struct
The goal of “mm_struct” (aka “Memory Descriptor”) is to used by the Linux kernel in order to
represents the process’ address space80. It is the user-mode part which belongs to the
task/process81. By the way, until kernel version 2.6.23 the struct was defined under
“/include/linux/sched.h”82, since “2.6.24” it is located under “/include/linux/mm_types.h”83.
Also, there is a pointer from the process’ “task_struct”84 that refers to the address space of the
process (“mm_struct”) which is stored in the “mm” field85.

Overall, we can say that “mm_struct” holds the data Linux needs about the memory address
space of the process. Among those data elements are: “mm_users” (the number of tasks using
this address space), “map_count” (the number of virtual memory areas, VMAs, used by the task)
and “total_vm” (the total number of pages mapped by the task). You can see part of the
information stored in “mm_struct” by going over “/proc/[PID]/maps” (“man proc”).

Moreover, If you want to go over all of data elements I suggest going through the definition of
“mm_struct” as part of the Linux source code86. Fun fact is that in kernel 6.2-rc1 “task_strcut” is
referenced in 656 files87. Based on LXR88 it seems that “mm_struct” was added from kernel
version 1.1.1189 as we don’t see it in previous versions90.

Lastly, let us go over an example using bpftrace. We can use the following command: sudo
bpftrace -e 'kfunc:schedule {
printf("%s,%d,%d\n",curtask->comm,curtask->pid,curtask->mm->map_count); }'. As
shown in the screenshot below, the command prints the name, pid and VMA count for the
current task every time the scheduler function is triggered. From the screenshot we can see that
kernel threads have a count of zero VMAs (in their case current->mm==NULL). Also, we can
see that the “map_count” is one less91 than the number of rows in “/proc/[PID]/maps”.

91 It is due to the mechanism of vsyscall
90 https://elixir.bootlin.com/linux/1.1.10/A/ident/mm_struct
89 https://elixir.bootlin.com/linux/1.1.11/source/include/linux/sched.h#L214
88 https://elixir.bootlin.com
87 https://elixir.bootlin.com/linux/v6.2-rc1/C/ident/mm_struct
86 https://elixir.bootlin.com/linux/v6.2-rc1/source/include/linux/mm_types.h#L601
85 https://elixir.bootlin.com/linux/v6.2-rc1/source/include/linux/sched.h#L870
84 https://medium.com/@boutnaru/linux-kernel-task-struct-829f51d97275
83 https://elixir.bootlin.com/linux/v2.6.24/source/include/linux/mm_types.h#L156
82 https://elixir.bootlin.com/linux/v2.6.23/source/include/linux/sched.h#L369
81 https://medium.com/@boutnaru/linux-memory-management-part-1-introduction-896f376d3713
80 http://books.gigatux.nl/mirror/kerneldevelopment/0672327201/ch14lev1sec1.html

https://elixir.bootlin.com/linux/1.1.10/A/ident/mm_struct
https://elixir.bootlin.com/linux/1.1.11/source/include/linux/sched.h#L214
https://elixir.bootlin.com
https://elixir.bootlin.com/linux/v6.2-rc1/C/ident/mm_struct
https://elixir.bootlin.com/linux/v6.2-rc1/source/include/linux/mm_types.h#L601
https://elixir.bootlin.com/linux/v6.2-rc1/source/include/linux/sched.h#L870
https://medium.com/@boutnaru/linux-kernel-task-struct-829f51d97275
https://elixir.bootlin.com/linux/v2.6.24/source/include/linux/mm_types.h#L156
https://elixir.bootlin.com/linux/v2.6.23/source/include/linux/sched.h#L369
https://medium.com/@boutnaru/linux-memory-management-part-1-introduction-896f376d3713
http://books.gigatux.nl/mirror/kerneldevelopment/0672327201/ch14lev1sec1.html

struct vm_area_struct
“vm_area_struct” represents a contiguous memory area in a process's address space (virtual
memory areas) - as shown in the diagram below92. It is used to track the permissions, properties,
and operations associated with each memory area93.

This struct defines a memory VMM memory area. There is one of these per VM-area/task. A
VM area is any part of the process virtual memory space that has a special rule for the page-fault
handler. Think about shared libraries and executable area94.

Until kernel version 2.6.21 (including) “struct vm_area_struct” is defined in
“/include/linux/mm.h”95. From kernel versions about it is defined in
“/include/linux/mm_types.h”96.

Lastly, by using “/proc/[PID]/maps” we can read the mapped regions and their access
permissions (when using the mmap system call). For each region we can get the information
about: its address range, pathname (in case mapped from a file), offset (in case mapped from a
file), device (in case mapped from a file), inode (in case mapped from a file and permissions)97.

97 https://man7.org/linux/man-pages/man5/proc.5.html
96 https://elixir.bootlin.com/linux/v6.5-rc1/source/include/linux/mm_types.h#L490
95 https://elixir.bootlin.com/linux/v2.6.21/source/include/linux/mm.h#L60
94 https://elixir.bootlin.com/linux/v2.6.21/source/include/linux/mm.h#L55
93 http://books.gigatux.nl/mirror/kerneldevelopment/0672327201/ch14lev1sec2.html
92 https://don7hao.github.io/2015/01/28/kernel/mm_struct/

https://man7.org/linux/man-pages/man5/proc.5.html
https://elixir.bootlin.com/linux/v6.5-rc1/source/include/linux/mm_types.h#L490
https://elixir.bootlin.com/linux/v2.6.21/source/include/linux/mm.h#L60
https://elixir.bootlin.com/linux/v2.6.21/source/include/linux/mm.h#L55
http://books.gigatux.nl/mirror/kerneldevelopment/0672327201/ch14lev1sec2.html
https://don7hao.github.io/2015/01/28/kernel/mm_struct/

struct therad_info
“struct thread_info” is a common low-level thread information accessors98 (think about flags like
signal pending, 32 address space on 64 bit, CPUID is not accessible in user mode and more).
When “CONFIG_THREAD_INFO_IN_TASK” is defined, “struct thread_info” is the first
element of the “struct task_struct”99. This means that each task has its own “struct thread_info”.

Moreover, until kernel version 4.8 (including it) “struct thread_info” contained a pointer to
“struct task_struct”100 - the old relationship is shown in the diagram below101. But because it
wasted too much space to keep it like that. By putting “struct thread_info” in the start of “struct
task_struct” it makes getting from the “kernel stack”->”struct task_struct” and from “struct
task_struct”->”kernel stack” very easy102. The first is done using the “current_thread_info”
macro103. It uses “current_task” which is a per-cpu variable104.

Lastly, it is important to understand that this data structure is CPU dependent and thus it is
defined in the source code in the following location
“/arch/[CPU_ARCH]/include/asm/thread_info.h”. Examples for “CPU_ARCH” could be:
“x86”105, “mips”106, “riscv”107, “arm64”108 and more.

108 https://elixir.bootlin.com/linux/v6.5-rc3/source/arch/arm64/include/asm/thread_info.h#L24
107 https://elixir.bootlin.com/linux/v6.5-rc3/source/arch/riscv/include/asm/thread_info.h#L51
106 https://elixir.bootlin.com/linux/v6.5-rc3/source/arch/mips/include/asm/thread_info.h#L25
105 https://elixir.bootlin.com/linux/v6.5-rc3/source/arch/x86/include/asm/thread_info.h#L56
104 https://elixir.bootlin.com/linux/v6.5-rc3/source/arch/x86/include/asm/current.h#L41
103 https://elixir.bootlin.com/linux/v6.5-rc3/source/include/linux/thread_info.h#L24
102 https://stackoverflow.com/questions/61886139/why-thread-info-should-be-the-first-element-in-task-struct
101 https://blog.lexfo.fr/cve-2017-11176-linux-kernel-exploitation-part4.html
100 https://elixir.bootlin.com/linux/v4.8.17/source/arch/x86/include/asm/thread_info.h#L56
99 https://medium.com/@boutnaru/linux-kernel-task-struct-829f51d97275
98 https://elixir.bootlin.com/linux/v6.5-rc3/source/include/linux/thread_info.h#L2

https://elixir.bootlin.com/linux/v6.5-rc3/source/arch/arm64/include/asm/thread_info.h#L24
https://elixir.bootlin.com/linux/v6.5-rc3/source/arch/riscv/include/asm/thread_info.h#L51
https://elixir.bootlin.com/linux/v6.5-rc3/source/arch/mips/include/asm/thread_info.h#L25
https://elixir.bootlin.com/linux/v6.5-rc3/source/arch/x86/include/asm/thread_info.h#L56
https://elixir.bootlin.com/linux/v6.5-rc3/source/arch/x86/include/asm/current.h#L41
https://elixir.bootlin.com/linux/v6.5-rc3/source/include/linux/thread_info.h#L24
https://stackoverflow.com/questions/61886139/why-thread-info-should-be-the-first-element-in-task-struct
https://blog.lexfo.fr/cve-2017-11176-linux-kernel-exploitation-part4.html
https://elixir.bootlin.com/linux/v4.8.17/source/arch/x86/include/asm/thread_info.h#L56
https://medium.com/@boutnaru/linux-kernel-task-struct-829f51d97275
https://elixir.bootlin.com/linux/v6.5-rc3/source/include/linux/thread_info.h#L2

struct thread_struct
Overall, the goal of “struct thread_strcut” which hold CPU-specific state of a task109. Among the
information “struct thread_struct” holds we can include things like page fault information (like
the address that caused the page fault and fault code). Also, it can include a set of registers of the
current CPU - as shown in the the diagram below110.

On x86 the variable which is part of “struct task_struct”111 must be at the end of the struct. The
reason for that is it contain a variable-sized structure112.

Moreover, like “struct thread_info”113 also “struct thread_sturct” is CPU/Architecture dependent
and thus it is defined in the source code in the following location
“/arch/[CPU_ARCH]/include/asm/processor.h”114. For example x86115 and arm64116.

116 https://elixir.bootlin.com/linux/v6.5-rc4/source/arch/arm64/include/asm/processor.h#L147
115 https://elixir.bootlin.com/linux/v6.5-rc4/source/arch/x86/include/asm/processor.h#L414
114 https://elixir.bootlin.com/linux/v6.5-rc4/C/ident/thread_struct
113 https://medium.com/@boutnaru/the-linux-kernel-data-structure-journey-struct-thread-info-4e70bc20d279
112 https://elixir.bootlin.com/linux/v6.5-rc4/source/include/linux/sched.h#L1544
111 https://medium.com/@boutnaru/linux-kernel-task-struct-829f51d97275
110 https://kernel.0voice.com/forum.php?mod=viewthread&tid=2920
109 https://elixir.bootlin.com/linux/v6.5-rc4/source/include/linux/sched.h#L1540

https://elixir.bootlin.com/linux/v6.5-rc4/source/arch/arm64/include/asm/processor.h#L147
https://elixir.bootlin.com/linux/v6.5-rc4/source/arch/x86/include/asm/processor.h#L414
https://elixir.bootlin.com/linux/v6.5-rc4/C/ident/thread_struct
https://medium.com/@boutnaru/the-linux-kernel-data-structure-journey-struct-thread-info-4e70bc20d279
https://elixir.bootlin.com/linux/v6.5-rc4/source/include/linux/sched.h#L1544
https://medium.com/@boutnaru/linux-kernel-task-struct-829f51d97275
https://kernel.0voice.com/forum.php?mod=viewthread&tid=2920
https://elixir.bootlin.com/linux/v6.5-rc4/source/include/linux/sched.h#L1540

