The Portable
xecutable Journey

Version 1.0
May-2024

By Dr. Shlomi Boutnaru

Screenshot taken from TotalPE

Table of Contents

Table Of CONTENLS........ ...t s s s e s e e s e e e e e an s s s s s s e e e e s nnmnnssssassseeesennnnnnn
INErOAUCTION......cceeee e ————————
DOS Header (struct _IMAGE_DOS_HEADER).........ccoooo i ssssssnssnnnns
9 10 1S 1 o
NT Headers (struct _IMAGE_NT_HEADERS32/64)..........oiiiiiiiieeerrreesesssssssmneesesesssssssssnennes
File Header (struct _IMAGE_FILE_HEADER)..........ccoooiiiiiiiiiiieicrirresrs s sss s
Optional Header (struct _IMAGE_OPTIONAL_HEADER32/64).........cccccceerrrrrrrrrirrrnsnnssnnssnnnes

Introduction

Understanding the PE (Portable Executable) file format is crucial for different tasks such as
analyzing malware and reverse engineering. Also, this file format is used by Windows
applications, UEFI firmware and even for Linux applications (such as does based on .NET core).

Thus, I wanted to create something that will improve the overall knowledge of the PE file format
with writeups that can be read in 1-3 mins. I hope you are going to enjoy the ride.

Lastly, you can follow me on twitter - @boutnaru (https://twitter.com/boutnaru). Also, you can
read my other writeups on medium - https://medium.com/@boutnaru. Lastly, You can find my
free eBooks at https://Thel earningJourneyEbooks.com.

https://twitter.com/boutnaru
https://medium.com/@boutnaru
https://thelearningjourneyebooks.com

DOS Header (struct IMAGE_DOS_ HEADER)

Every PE (Portable Executable) binary starts with a MS-DOS (Microsoft Disk Operating
System) header. By the way, the PE format is used by: Windows 95 and higher, Windows NT
3.1 and higher, ReactOS and UEFTL. It is also used by .NET assemblies’.

Overall, the first two bytes (aka “Magic”) is “0x5A4D” which is “MZ” in ASCII. The letter
“MZ” stands for “Mark Zbikowski” , who is one of the designers on the MS-DOS executable - as
shown in the screenshot below, taken using “https://hexed.it/” while examining “mspaint.exe”

Moreover, the “DOS Header” is defined using “struct IMAGE DOS HEADER™. As we can
see the last field “e lfanew” contains the file address pointing to the beginning of the PE header
(in little endian” - as shown in the screenshot below.

Lastly, the Windows loader cares about ‘“e magic” and “e Ifanew” from ‘“struct
_IMAGE DOS HEADER”. The other members (like initial instruction pointer, initial stack
pointer, number of pages in the file and more) are relevant for MS-DOS when executing the stud
program, which follows the DOS header and is going to be detailed in a future writeup*.

mspaint.exef »

00000000 4D 5A] 90

00000010 B8 00 00 Teeeennn @ .ovnn.
00000020 00 00 0O 00 00 00 B0 00 00 00 80 00 00 00 00 00
00000030 ©0 00 00 00 ©0 00 0O 00 00 00 00 00 F8 00 60 00 G

00000040 OF 1F BA I-q-=13. L=1Th

00000050 69 73 20
00000060 74 20 62

is program canno
t be run in DOS

00000070 6D 6F 64 mode....$.......
00000080 86 7B 9D a{¥pT. <#-|-.$#I.s#
00000090 CB 62 60 70 #[<#pa="-.<#
000000A0 D6 71 F7 paz"d . s#pgstz. <#
000000B0 D6 71 F2 paz"m. <#r. 24k <y
000000CO D6 71 FB pav"B.s#pq. # | <t

000000D0O D6 71 F1
000000EO 00 00 00
000000F0 00 00 00

qu"f.s#RichT.s#

3 https://github. com/reactos/reactos/blob/master/drlvers/ﬁlesystems/udfs/Include/ntddk ex.h#1.99
4 https://osandamalith.com/2020/07/19/exploring-the-ms-dos-stub/

https://hexed.it/
https://osandamalith.com/2020/07/19/exploring-the-ms-dos-stub/
https://github.com/reactos/reactos/blob/master/drivers/filesystems/udfs/Include/ntddk_ex.h#L99
https://medium.com/@boutnaru/the-windows-process-journey-mspaint-exe-paint-3317a8fb3a57
https://wiki.osdev.org/PE

DOS Stub

Just after the “DOS Header and before the “NT Headers” we have the “DOS Stub”. The DOS
stub is a program which is invoked in case the file is executed in MS-DOS. By default it displays
the following message: “This program cannot be run in MS-DOS mode.” - as shown in the
screenshot below, taken using “https:/hexed.it/” while examining “cmd.exe”®. Any valid
MS-DOS application can act as the DOS stub program, due to that we can also change it if we
want’.

Moreover, the DOS stub is a 16-bit program (real-mode). Also, in case the stub program is
executed the instruction pointer (EIP), stack pointer (ESP), the code segment (CS) and stack

segment are initialized based on data stored as part of the DOS header: “e ip”, “e_sp”, “e_cs”
and “e_ss” respectively®.

Lastly, we can see in the screenshot below that the opcode “int 0x21” is in use (CD 21). Most of
the general functions and services offered by DOS are implemented through this interrupt’. In the
case of the DOS stub it is used for printing and quitting the program (with an exit code).

ofoJolololofolo) 4D 5A 90 00 03 00 00 00 04 00 00 00 FF FF 00 00 MZE......... .
OOEOE010 B8 00 00 00 Q0 00 QPO 00 40 00 00 00 PO 0O 00 00 Jeeoonns @i

00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000030 00 00 00 60 B0 00 00 80 00 00 00 60 FO 00 80 00

00000040 OF 1F BA OF 00 B4 09[CD 21]B8 61 4C 54 68 ..|..4.=!5. L=fm
00000050 69 73 20 70 72 6F 67 72 61 6D 20 63 61 6E 6E 6F [1s program canndg
00000060 74 20 62 65 20 72 75 6E 20 69 6E 20 44 4F 53 20 |t be run in DOS
00000070 6D 6F 64 65 2E OD OD GA 24 00 00 00 0O 00 00 00 mode.. .. 5.
00000080 AB 4F 48 95 EF 2E 26 C6 EF 2E 26 C6 EF 2E 26 C6 xOHon.&pn.&fn.&f
0000090 E6 56 B5 C6 A9 2E 26 C6 FB 45 25 C7 EC 2E 26 C6 pV{ k. & FVEX[. &
©00000A® FB 45 22 C7 F9 2E 26 C6 EF 2E 27 C6 C6 2F 26 C6 +E"[-.&fn.' F}/&
000000B0 FB 45 27 C7 EA 2E 26 C6 FB 45 23 C7 E6 2E 26 C6 E'[[0.&F/E#|u.&
©00000CO FB 45 2B C7 C6 2E 26 C6 FB 45 D9 C6 EE 2E 26 C6 E+|h.&F/E! fo.&
00000000 FB 45 24 C7 EE 2E 26 C6 52 69 63 68 EF 2E 26 C6 +E$|e.&pRichn.&
000000E0 00 0O 00 60 00 00 00 60 00 00 00 00 00 00 00 00
000000F0 50 45 00 00 64 86 07 00 OD 19 EE D7 00 00 00 00 PE..da....cf....

[ATATATATAR BaTAl AN AR AN NN CA Aan 279 An AR Y AC 1A A 10 N2 AN = mn

8 https: //osandamahth com/2020/07/ 19/explorlng-the -ms-dos-stub/
% http://bbe.nvg.org/doc/Master%20512%20Technical%20Guide/m512techb_int21.htm

https://hexed.it/
http://bbc.nvg.org/doc/Master%20512%20Technical%20Guide/m512techb_int21.htm
https://osandamalith.com/2020/07/19/exploring-the-ms-dos-stub/
https://learn.microsoft.com/en-us/cpp/build/reference/stub-ms-dos-stub-file-name?view=msvc-170
https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b
https://medium.com/@boutnaru/the-portable-executable-journey-dos-header-ea5b29f15612

NT Headers (struct _IMAGE_NT_HEADERS32/64)

Pointed from the “DOS Header”" and should be after the “DOS stub”"' we have the “NT
Headers”. The “NT Header” (aka “PE Header”) is defined in one of two data structures: “struct
_IMAGE_NT_HEADERS32”!? for 32-bit binaries and “struct IMAGE _NT _HEADERS64”"
for 64-bit binaries.

Overall, the data structure is composed of 3 fields: “Signature”, “File Header” (struct
_IMAGE FILE HEADER) and “Optional Header* (struct
_IMAGE OPTIONAL HEADER32/64). Signature is “PE\0\0”, which are the letters "P" and
"E" followed by two null bytes. File header is a standard COFF header - which we are going to
detail in a future writeup. The optional header is a must in the case of an image file and optional
only in case of an object file'.

Lastly, because there are two versions for the “Optional Header” (32/64 bit) we also have two
versions of the “NT Headers” data structure. We can see the hierarchy of the “NT Headers” in
the output of “CFF Explorer” created by Erik Pistelli which allows viewing/modifying PE files'
- as shown in the screenshot below.

[™ File: notepad exe
—— 2] Dos Header
—] L&l Nt Headers
—— |2 File Header
2| Optional Header
2| Data Directories [x]

10 https //medlum com/@boutnaru/the Dortab e-executable- 10umev dos-header-ea5b29f15612

https://learn.microsoft.com/en-us/windows/win32/debug/pe- forlnat#51gnature -image-only
15 https://ntcore.com/explorer-suite/

14

https://ntcore.com/explorer-suite/
https://learn.microsoft.com/en-us/windows/win32/debug/pe-format#signature-image-only
https://learn.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-image_nt_headers64
https://learn.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-image_nt_headers32
https://medium.com/@boutnaru/the-portable-executable-journey-dos-stub-0ca8cda20570
https://medium.com/@boutnaru/the-portable-executable-journey-dos-header-ea5b29f15612

File Header (struct IMAGE_FILE_HEADER)

“File Header” represents the COFF (Common Object File Format) header. COFF is used for
storing compiled code (output of a compiler and linker). Thus, PE (sometimes called PE/COFF)
contains a version of COFF. Its goal is to hold basic information about the file while containing
pointers to other data structures. By the way, this header is fixed in size'®.

Overall, the “File Header” consists of seven fields: “Machine”, “NumberOfSections”,
“TimeDateStamp”, “PointerToSymbolTable”, “NumberOfSymbols”, “SizeOfOptionalHeader”
and “Characteristics”. The “Machine” field describes the architecture which the file can be
executed on, examples of relevant values are: x86 (IMAGE FILE MACHINE I386 which
equals to 0x014c), “Intel Itanium” (IMAGE FILE MACHINE I1A64 which equals to 0x0200)
and “x64” (IMAGE FILE MACHINE AMD64 which equals to 0x8664) - more values are
available in the Microsoft documentation'’. “NumberOfSections™ defines how long is the section
table (by the way the limit of the Windows loader is 96). “TimeDateStamp” is the number of
seconds (since January 1, 1970 midnight) according to the system clock inserted by the linker!®,

Moreover, “PointerToSymbolTable” is the offset in bytes to the symbol (name to address of
variable/function) table (0 if there is no symbol table). “NumberOfSymbols” is the number of
symbols in the symbol table. “SizeOfOptionalHeader” is the size of the “Optional Header” in
bytes. By the way, if the size is “0” the file is an “object file”"’.

Lastly, the “Characteristics” field is used to describe the attributes of the file like: support of
>2GB addresses, debugging information is removed, the file is a DLL and more®. An example
of parsing the “File Header” for the “kernel32.d11” file using “CFF Explorer” is shown below.

x
Member Offset Size Value Meaning
Machine 0000004 Word 8664 AMDS4 (K8)
NumberOfSections | 000000F6 Word 0007

TimeDateStamp

PointerToSymbolTa... | 000000FC Dword 00000000

NumberOfSymbols | 00000100 Dword 00000000
lea... 00000104 Word 00F0

00000106 Word 202 Click here

000000F8 Dword 9ECIDA27

OOOROCO00KRE |5

CoC0
CFEET
:
5

16 https://wiki.osdev.org/COFF

17

18 https://learn.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-image _file header

1 https://gist.github.com/TheWover/730275aedcb4a2413cdbce8a2e33a8df4
20 https://learn.microsoft.com/en-us/windows/win32/debug/pe-format#characteristics

https://learn.microsoft.com/en-us/windows/win32/debug/pe-format#characteristics
https://gist.github.com/TheWover/730275aedcb4a2413cdbc8a2e33a8df4
https://learn.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-image_file_header
https://learn.microsoft.com/en-us/windows/win32/debug/pe-format#machine-types
https://wiki.osdev.org/COFF

Optional Header (struct
_IMAGE_OPTIONAL_HEADERS32/64)

Despite its name the “Optional Header” is not optional (it is required) in case of a compiled and
linked binary. This header contains information used by the OS loader when loading a PE file.
Because we can have a 64-bit or 32-bit PE file, there are corresponding versions of the “Optional
Header” data structure: “struct = IMAGE OPTIONAL HEADER64” and “struct
_IMAGE_OPTIONAL HEADER327?',

Moreover, remember that the size of the “Optional Header” is not fixed and it is defined in the
field “SizeOfOptionalHeader” as part of the “File Header**. They are multiple fields as part of
the “Optional Header” - as shown in the screenshot below (taken using pestudio). In general we
can divide the optional header to three main parts: standard fields, Windows specific fields and
data directories®

pestudio 9.58 - Malware Initial Assessment - www.winitor.com (read-only) — m] X

file settings about

?
= B c\windows\system32\cmd.exe property volue detail S
s indicators (groups > API) e e —
of >
a '“““:":““ (count > 19) address-space-layout-randomization (ASLR) fase
virustotal (0/72)
Control-flow Enf t Technology (/CETCOMPAC
dos-header (sze > 64 bytes) ontrol-flow Enforcement Technology (/)]
data-execution-prevention (DEP) true

B dos-stub (size > 176 bytes)
rich-header (tooling > Visual Studio 2015 | SOd€-integrity (C1)
file-header (executoble > G40 structured-exception-handling (SEH) true

T T e R T rals] | windows-driver-model (WDM)

&) directories (count > 8) terminal-server-aware (TSA) true
sections (count > 7) control-flow-guard (CFG) true
£ libraries (group > registry) image-bound
imports (flag > 286) image-isolation
3 High-Entropy true

AppContainer

T resources (count > 14) general
ate strings (count > 7254) subsystem console
{1 debug (streams > 3) magic PEx

EJ manifest (level > asinvoker)

file-checksum 0x0004EFCO

{2 version (FileDescription > Windows Com | _ N sectionl text]
k ode section[.text]

: size-of-code 200704 bytes
size-of-initialized-data 201728 bytes
size-of-uninitialized-data Obytes
size-of -image 421888 bytes
size-of-headers 1024 bytes
size-of -stack-reserve 1048576 bytes
size-of -stack-commit 1032192 bytes
size-of-heap-reserve 1048576 bytes .

< > |<mm . nnc -
sha256: 265B69033CEATAIFB214A34CDIB17912909AF46CTA4TI95DDTBBBIZA24507ESS cpu: 64-bit _ file-type: executable console

Thus, the standard fields part includes eight fields. “Magic”, which can be “0x10b” (PE) and
“0x20b” (PE+), the second allows access to 64-bit address space. “MajorLinkerVersion” and
“MinorLinkerVersion” which are the major and minor versions of the linker. “SizeOfCode”
which is the total size of all code sections (.text and more if relevant). “SizeOflnitializedData”
and “SizeOfUninitializedData” which is the total size of initialized and uninitialized (BSS)
sections. “AddressOfEntryPoint” and “BaseOfCode™*.

231

https://learn. m1crosoft com/en- us/w1nd0ws/w1n32/debug/pe format
24 https://learn.microsoft.com/en-us/windows/win32/debug/pe-format

https://learn.microsoft.com/en-us/windows/win32/debug/pe-format
https://learn.microsoft.com/en-us/windows/win32/debug/pe-format
https://medium.com/@boutnaru/the-portable-executable-journey-file-header-struct-image-file-header-00360271f147
https://github.com/reactos/reactos/blob/master/sdk/include/host/pecoff.h#L139

Lastly, the Windows specific field part contains 21 fields. “ImageBase”, “SectionAlignment,
“FileAlignment”, “MajorOperatingSystemVersion”, “MinorOperatingSystemVersion =~ “
“MajorlmageVersion “, “MinorlmageVersion”, “MajorSubsystem Version®,
“MinorSubsystemVersion”, “Win32VersionValue” (reserved, must be “07”), “SizeOflmage”,
“SizeOfHeaders “, “CheckSum”, “Subsystem”, “DllCharacteristics”, “SizeOfStackReserve”,
“SizeOfStackCommit”, “SizeOfHeapReserve”, “SizeOfHeapCommit”, “LoaderFlags” (reserved,

must be zero) and “NumberOfRvaAndSizes™.

2

https://learn.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-image_optional_header64

