
The Windows
Process Journey

Version 13
January-2025

By Dr. Shlomi Boutnaru

Created using Craiyon, AI Image Generator

https://www.craiyon.com/

Table of Contents

Table of Contents...2
Introduction..8
ntoskrnl.exe (NT Kernel & System)..9
System Idle Process (PID 0)... 10
smss.exe (Session Manager Subsystem)..11
csrss.exe (Client Server Runtime Subsystem)... 13
wininit.exe (Windows Start-Up Application)... 15
winlogon.exe (Windows Logon Application).. 16
userinit.exe (Userinit Logon Application)... 16
dwm.exe (Desktop Window Manager).. 18
LogonUI.exe (Windows Logon User Interface Host).. 20
explorer.exe (Windows Explorer)... 21
svchost.exe (Host Process for Windows Services)... 22
ctfmon.exe (CTF Loader).. 24
audiodg.exe (Windows Audio Device Graph Isolation)... 25
rdpclip.exe (RDP Clipboard Monitor)...26
smartscreen.exe (Windows Defender SmartScreen)... 27
ApplicationFrameHost.exe... 28
RuntimeBroker.exe..29
logoff.exe (Session Logoff Utility)... 30
cscript.exe (Microsoft ® Console Based Script Host)... 31
wscript.exe (Microsoft ® Windows Based Script Host)... 32
utilman.exe (Utility Manager)..33
osk.exe (Accessibility On-Screen Keyboard)... 34
alg.exe (Application Layer Gateway Service)... 35
DrvInst.exe (Driver Installation Module)..36
runas.exe (Run As Utility)...37
cmd.exe (Windows Command Processor).. 38
conhost.exe (Console Window Host).. 39
tasklist.exe (Lists the Current Running Tasks)...40
rundll32.exe (Windows Host Process)...41
net.exe (Network Command).. 42
net1.exe (Net Command for the 21st Century)..43
TabTip.exe (Touch Keyboard and Handwriting Panel)...44
fontdrvhost.exe (Usermode Font Driver Host)..45
OpenWith.exe (Pick an App)...46
mavinject.exe (Microsoft Application Virtualization Injector)... 47
where.exe (Lists location of Files)... 48

2

NisSrv.exe (Microsoft Network Realtime Inspection Service)... 49
Hostname.exe (Hostname APP)... 50
mmc.exe (Microsoft Management Console)..51
msg.exe (Message Utility)...52
Magnify.exe (Microsoft Screen Magnifier)...53
mstsc.exe (Remote Desktop Connection)...54
curl.exe (cURL executable)...55
winver.exe (Version Reporter Applet)..56
arp.exe (TCP/IP Arp Command)... 57
WFS.exe (Microsoft Windows Fax and Scan).. 58
clip.exe (Copies the Data into Clipboard)..59
consent.exe (Consent UI for Administrative Applications)... 60
getmac.exe (Displays NIC MAC information)..61
defrag.exe (Disk Defragmenter Module)..62
msedge.exe (Microsoft Edge)...63
tzutil.exe (Windows Time Zone Utility).. 64
expand.exe (LZ Expansion Utility)... 65
WSReset.exe (Windows Store Reset).. 66
SlideToShutDown.exe (Windows Slide To Shutdown)...67
takeown.exe (Takes Ownership of a File)..68
dialer.exe (Microsoft Windows Phone Dialer)... 69
bthudtask.exe (Bluetooth Uninstall Device Task)...70
DisplaySwitch.exe (Windows Display Switch)..71
SpaceAgent.exe (Storage Spaces Settings)... 72
tar.exe (BSD tar Archive Tool).. 73
timeout.exe (Pauses Command Processing)..74
doskey.exe (Keyboard History Utility)... 75
fsquirt.exe (Bluetooth File Transfer)..76
label.exe (Disk Label Utility)... 77
forfiles.exe (Execute a Command on Selected Files)...78
eudcedit.exe (Private Character Editor).. 79
wmplayer.exe (Windows Media Player)... 80
dvdplay.exe (DVD Play Placeholder Application)... 81
comp.exe (File Compare Utility)...82
find.exe (Find String (grep) Utility)...83
mspaint.exe (Paint)..84
services.exe (Service Control Manager)..85
sc.exe (Service Control Manager Configuration Tool)... 86
phoneactivate.exe (Phone Activation UI).. 87
choice.exe (Offers the User a Choice)...88
qprocess.exe (Query Process Utility)..89

3

rasdial.exe (Remote Access Command Line Dial UI)...90
waitfor.exe (Wait/Send a Signal Over a Network)... 91
tsdiscon.exe (Session Disconnection Utility)...92
RunLegacyCPLElevated.exe (Running Legacy Control Panel Applet in Elevated Mode)..93
dism.exe (Deployment Image Servicing and Management Tool).. 94
chkdsk.exe (Check Disk Utility)..95
UserAccountControlSettings.exe (Configuring UAC Settings)...96
DeviceCensus.exe (Device Information)... 97
MpCmdRun.exe (Microsoft Malware Protection Command Line Utility).............................. 98
MpDefenderCoreService.exe (Antimalware Core Service).. 99
MsSense.exe (Windows Defender Advanced Threat Protection Service Executable)......100
lsass.exe (Local Security Authority Process)...101
Taskmgr.exe (Task Manager).. 102
LaunchTM.exe (Task Manager Launcher)... 103
makecab.exe (Cabinet Maker).. 104
control.exe (Windows Control Panel).. 105
SystemSettings.exe (Immersive Control Panel System Settings App).............................. 106
isoburn.exe (Windows Disc Image Burning Tool).. 107
MoUsoCoreWorker.exe (MoUSO Core Worker Process)... 108
sppsvc.exe (Microsoft Software Protection Platform Service)... 109
taskhostw.exe (Host Process for Windows Tasks)...110
wuauclt.exe (Windows Update Auto Update Client)... 111
TrustedInstaller.exe (Windows Modules Installer)..112
extrac32.exe (CAB File Extract Utility)...113
SgrmBroker.exe (System Guard Runtime Monitor Broker Service)....................................114
ipconfig.exe (IP Configuration Utility)..115
wifitask.exe (Wireless Background Task)..116
powershell.exe (Windows PowerShell)..117
wermgr.exe (Windows Problem Reporting)...118
WerFault.exe (Windows Problem Reporting).. 119
WerFaultSecure.exe (Windows Fault Reporting)..120
cofire.exe (Corrupted File Recovery Client)..121
certutil.exe (Digital Certificate Utility)...122
reg.exe (Registry Console Tool)..123
bitsadmin.exe (BITS administration utility)...124
MsMpEng.exe (Antimalware Service Executable).. 125
cacls.exe (Control ACLs Program).. 126
icacls.exe (Integrity Control ACLs Program).. 127
slui.exe (Windows Activation Client)... 128
xcopy.exe (Extended Copy Utility)... 129
hh.exe (Microsoft® HTML Help Executable)... 129

4

HelpPane.exe (Microsoft Help and Support)...131
winhlp32.exe (Windows Winhlp32 Stub)... 132
pnputil.exe (Plug and Play Utility)..133
ping.exe (TCP/IP Ping Command)..134
LsaIso.exe (Credential Guard & Key Guard)...135
help.exe (Command Line Help Utility)... 136
route.exe (TCP/IP Route Command)..137
whoami.exe (Displays Logged On User Information).. 138
tree.com (Tree Walk Utility)...139
replace.exe (Replace File Utility)..140
attrib.exe (Attribute Utility)... 141
tabcal.exe (Digitizer Calibration Tool)..142
regedt32.exe (Registry Editor Utility)...143
Bubbles.scr (Bubbles ScreenSaver)..144
systeminfo.exe (Displays system information).. 145
diskpart.exe (Microsoft DiskPart Utility)..146
bootmgr.exe (Windows Boot Manager)... 147
PathPing.exe (TCP/IP PathPing Command)..148
ComputerDefaults.exe (Set Program Access and Computer Defaults Control Panel)..... 149
autofmt.exe (Auto File System Format Utility)..150
Narrator.exe (Screen Reader)... 151
netsh.exe (Network Command Shell).. 152
wpr.exe (Microsoft Windows Performance Recorder)... 153
regedit.exe (Registry Editor)...154
fltMC.exe (Filter Manager Control Program)... 155
format.com (Disk Format Utility)..156
runonce.exe (Run Once Wrapper)..157

5

Introduction
Before speaking about a specific process I wanted to talk about an attribute related to all
processes on Windows which is not so well known among all administrators/users/programmers
etc.

I encourage you before reading the next lines to open any process listing app/program that you
like in Windows (tasklist, task manager, process explorer or anything else) and go over PID
numbers of all the processes - What can you learn from those numbers?

You probably saw that all of them are even numbers, what is more interesting is that if you
divide them by two you will still get an even number - thus all the PIDs are divisible by 4!!!!
BTW, the same is true for TIDs (Thread IDs) under Windows. A screenshot from

The reason for that is due to code reuse in the Windows kernel. The PIDs/TIDs are allocated by
the same code which allocates kernel handles. Thus, since kernel handles are divisible by 4 so
are PIDs/TIDs. We can also use the following powershell command to list only the PIDs:
“Get-Process | select ID” - as shown in the screenshot below.

But why are the handles divisible by 4? Because the two bottom bits can be ignored by Windows
and could be used for tagging. You can verify it by going over the comments in ntdef.h
-https://github.com/tpn/winsdk-10/blob/master/Include/10.0.10240.0/shared/ntdef.h#L846. Think
about the pattern for each PID/TID in binary form to fully understand it.

Lastly, you can follow me on twitter - @boutnaru (https://twitter.com/boutnaru). Also, you can
read my other writeups on medium - https://medium.com/@boutnaru. Lastly, You can find my
free eBooks at https://TheLearningJourneyEbooks.com. Lets GO!!!!!!

6

https://github.com/tpn/winsdk-10/blob/master/Include/10.0.10240.0/shared/ntdef.h#L846
https://twitter.com/boutnaru
https://medium.com/@boutnaru
https://thelearningjourneyebooks.com

ntoskrnl.exe (NT Kernel & System)
In general, “ntoskrnl.exe” is the kernel image of the Windows operating system. It includes both
the executive and the kernel layers of Windows NT, which are responsible for memory
management, process handling and hardware abstraction. Also, “ntoskrnl.exe” contains the
SRM (Security Reference Monitor), cache manager, scheduler and more1.

Overall, although in the “Subsystem” field of the PE header “ntoskrnl.exe” is defined as
“Native”, it is not linked with “ntdll.exe” as other user-mode native applications - as shown in
the screenshot below which was taken using “PE Explorer”2. Due to that, “ntoskrnl.exe” needs a
“static” copy of the C runtime (think about function like “strcmp”, “strcpy”, “strcpy_s”, “strlen”
and more) - as shown in the screenshot below. For a reference implementation we can check out
the ReactOS source code3.

Lastly, the functions exported by “ntoskrnl.exe” have specific prefixes which indicate the
component in which they are part of, for example: “Io” (I/O manager), Ke (core kernel routines),
“Kd” (kernel debugger support functions), “Ldr” (PE image loader support functions), “Mm”
(memory management), “Se” (security functions), “Ob” (object manager), “Hal” (hardware
abstraction layer), “Ps” (process management functions), “Nls” (native language support) and
more4.

4 https://community.osr.com/t/meaning-of-the-function-prefices/21242
3 https://github.com/reactos/reactos/tree/master/ntoskrnl
2 https://github.com/zodiacon/PEExplorerV2
1 https://en.wikipedia.org/wiki/Ntoskrnl.exe

7

https://community.osr.com/t/meaning-of-the-function-prefices/21242
https://github.com/reactos/reactos/tree/master/ntoskrnl
https://github.com/zodiacon/PEExplorerV2
https://en.wikipedia.org/wiki/Ntoskrnl.exe

System Idle Process (PID 0)
The goal of this process is to give the CPU something to execute in case there is nothing else to
do (thus it is called idle ;-). Let's think about the next situation, we have a process using 30% of
CPU, in that case PID 0 (System Idle) will consume the remaining 70%. Also, Idle is the first
process that the kernel starts.

Moreover, there is a kernel thread of System Idle for each vCPU the OS has identified (check out
the screenshot below which shows that. The VM which I have used had 3 vCPUs - also see the
first field in the table showing the “Processor”).

The reason for having an “Idle Process” is to avoid an edge case in which the scheduler
(Windows schedule based on threads) does not have any thread in a “Ready” state to execute
next. By the way, there are also other schedulers IO and Memory, which we will talk about in
one of the next posts/writeups.

When the kernel threads are executed they can also perform different power saving tricks
regarding the CPU. One of them could be halting different components which are not in use until
the next interrupt arrives. The kernel threads can also call functions in the HAL (hardware
abstraction layer, more on that in the future) in order to perform tasks such as reducing the CPU
clock speed. Which optimization is performed is based on the version of Windows, hardware and
the firmware installed.

8

smss.exe (Session Manager Subsystem)
“smss.exe” is the first user-mode process, it is executed from the following location:
%SystemRoot%\System32\smss.exe. It’s part of Windows since Windows NT 3.1 (1993). Thus,
it starts as part of the OS startup phase and performs different tasks such as those we are doing to
detail next (The order of writing is not the order of execution).

Performing delayed renaming/file deletion changes based on configuration in the Registry -
“HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session
Manager\FileRenameOperations” (for now we should know the Registry central repository for
Windows configuration, more on this in the future).

Creation of DOS device mapping based on
“HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\DOS
Devices” such as AUX, CON, PIPE and more (a short explanation could be found here -
http://winapi.freetechsecrets.com/win32/WIN32DefineDosDevice.htm).

Loading the subsystems which are configured in the Registry -
“HKLM\System\CurrentControlSet\Control\Session Manager\SubSystems”. At minimum we
have have the kernel part of the Win32 Subsystem (aka win32k.sys) and on session 0, which is
the session in which Windows’ services are executed - smss.exe starts
“csrss.exe” and “wininit.exe” (you can also read about them in the following pages).

Also, on session 1, which is the first user session - smss.exe starts “csrss.exe” and
“winlogon.exe”. Of course, they could be multiple sessions if more users are logged on (locally
or using RDP).

Moreover, both the page files (used for virtual memory) and environment variables
(“HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session
Manager\Environment”) are created by “smss.exe”. There are also more actions regarding
memory management, KnownDlls, power management and more that are going to be discussed
in the future. “smss.exe” also takes part when creating a new RDP session, we will detail this
process after taking more in depth about sessions, desktops and windows stations in a future
writeup - so stay tuned.

Anyhow, we should expect only one instance of “smss.exe” running without any children
processes on session 0, with PPID 4 (“System Process”). This “smss.exe” is called the master,it
is responsible for creating at minimum 2 instances of itself for session 0 and 1 (in order to do the
work we detailed above). The other instances of “smss.exe” (the non-master) will terminate after
finishing the session initialization phase of a new session. On the screenshot below we can see

9

http://winapi.freetechsecrets.com/win32/WIN32DefineDosDevice.htm

“wininit.exe” from session 0 and “winlogon.exe” from session 1 both of them having a
non-existent parent.

10

csrss.exe (Client Server Runtime Subsystem)
The goal of “csrss.exe” (Client Server Runtime Subsystem) is to be the user-mode part of the
Win32 subsystem (which is responsible for providing the Windows API). “csrss.exe” is included
in Windows from Windows NT 3.1. It is located at “%windir%\System32\csrss.exe” (which is
most of the time C:\Windows\System32\csrss.exe).

From Windows NT 4.0 most of the Win32 subsystem has been moved to kernel mode - “With
this new release, the Window Manager, GDI, and related graphics device drivers have been
moved to the Windows NT Executive running in kernel mode”5. Thus “csrss.exe” manages today
GUI shutdowns and windows console (today it is “cmd.exe”).

Overall, we can say that today “csrss.exe” handles things like process/threads, VDM (Visual
DOS machine emulation), creating of temp files and more6 . It is executed by “local system” and
there is one instance per user session. Thus, at minimum we will have two (one for session 0 and
on for session 1) - as shown in the screenshot below. “csrss.exe” has a handle for each
process/thread in the specific session it is part of. Also, for each running process a
CSR_PROCESS structure is maintained7, by the way we can leverage this fact for identifying
hidden processes (like by using “psxview”8 from the volatility framework).

“smss.exe” is the process which starts “csrss.exe” together with “winlogon.exe” (more about it in
a future writeup), after finishing “smss.exe” exits. In case you want to read more about
“smss.exe”9. By the way, from Windows 7 (and later) “csrss.exe” executes “conhost.exe” instead
of drawing the console windows by itself (I am going to elaborate about that in the next writeup).

Lastly, “csrss.exe” loads “csrsrv.dll”, “basesrv.dll” and “winsrv.dll” as shown in the screenshot
below. If we want to go over some of the source code of “csrss.exe” we can use the ReactOS
which is a “A free Windows-compatible Operating System”, which is hosted in github.com. The
relevant code of the entire subsystem can be found at
https://github.com/reactos/reactos/tree/master/subsystems/csr. We can also debug “csrss.exe”
using WinDbg, it is important to know that since Windows “csrss.exe” is a protected process so
it can be debugged form kernel mode only10. A list of all the “csrss.exe” API list can be found
here https://j00ru.vexillium.org/csrss_list/api_table.html.

10 https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/debugging-csrss
9https://medium.com/@boutnaru/the-windows-process-journey-smss-exe-session-manager-subsystem-bca2cf748d33
8 https://github.com/volatilityfoundation/volatility/wiki/Command-Reference-Mal#psxview

7 https://www.geoffchappell.com/studies/windows/win32/csrsrv/api/process/process.htm

6 https://j00ru.vexillium.org/2010/07/windows-csrss-write-up-the-basics/
5https://learn.microsoft.com/en-us/previous-versions//cc750820(v=technet.10)?redirectedfrom=MSDN#XSLTsection124121120120

11

https://github.com/reactos/reactos/tree/master/subsystems/csr
https://j00ru.vexillium.org/csrss_list/api_table.html
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/debugging-csrss
https://medium.com/@boutnaru/the-windows-process-journey-smss-exe-session-manager-subsystem-bca2cf748d33
https://github.com/volatilityfoundation/volatility/wiki/Command-Reference-Mal#psxview
https://www.geoffchappell.com/studies/windows/win32/csrsrv/api/process/process.htm
https://j00ru.vexillium.org/2010/07/windows-csrss-write-up-the-basics/
https://learn.microsoft.com/en-us/previous-versions//cc750820(v=technet.10)?redirectedfrom=MSDN#XSLTsection124121120120

12

wininit.exe (Windows Start-Up Application)
“wininit.exe” is an executable which is responsible for different initialization steps as described
next. The executable is located at “%windir%\System32\wininit.exe” (On 64 bit systems there is
only a 64 bit version with no 32 bit version — in contrast to other executables such as cmd.exe).
It is started by the first “smss.exe” at session 0 under LocalSystem (S-1–5–18). Overall there
should be only one running instance of “wininit.exe”.

Historically, “wininit.exe” was used mainly in order to allow uninstallers to process commands
stored in the “WinInit.ini” file. By doing so it allowed programs to take action while the system
is booting11.

Moreover, “wininit.exe” is responsible for a couple of system initialization steps. Among them
are: creating the %windir%\temp folder, initializing the user-mode scheduling infrastructure,
creating a window station (Winsta0) and two desktops (Winlogon and Default) for processes to
run on in session 0, marking itself critical so that if it exits prematurely and the system is booted
in debugging mode (it will break into the debugger) and waiting forever for system shutdown12.

Also, “wininit.exe” launches “services.exe” (SCM — Service Control Manager) , “lsass.exe”
(Local Security Authority Subsystem) and “fontdrvhost.exe” (Usermode Font Driver Host) — as
seen in the screenshot below. If you want more information about service management I suggest
reading https://medium.com/@boutnaru/windows-services-part-1-5d6c2d25b31c and
https://medium.com/@boutnaru/windows-services-part-2-7e2bdab5bce4. Regarding the last two
(“lsass.exe” and “fontdrvhost.exe”) I am going to write something in the near future.

12 https://learn.microsoft.com/en-us/answers/questions/405417/explanation-of-windows-processes-and-dlls.html

11https://social.technet.microsoft.com/Forums/ie/en-US/df6f5eeb-cbb9-404f-9414-320ea02b4a60/wininitexe-what-is-is-and-why-is-it-co
nstantly-running

13

https://medium.com/@boutnaru/windows-services-part-1-5d6c2d25b31c
https://medium.com/@boutnaru/windows-services-part-2-7e2bdab5bce4
https://medium.com/@boutnaru/windows-services-part-2-7e2bdab5bce4
https://learn.microsoft.com/en-us/answers/questions/405417/explanation-of-windows-processes-and-dlls.html
https://social.technet.microsoft.com/Forums/ie/en-US/df6f5eeb-cbb9-404f-9414-320ea02b4a60/wininitexe-what-is-is-and-why-is-it-constantly-running?forum=win10itprosecurity
https://social.technet.microsoft.com/Forums/ie/en-US/df6f5eeb-cbb9-404f-9414-320ea02b4a60/wininitexe-what-is-is-and-why-is-it-constantly-running?forum=win10itprosecurity

winlogon.exe (Windows Logon Application)
“winlogon.exe” is an executable which is located at “%windir%\System32\winlogon.exe“ (On
64 bit systems there is only a 64-bit version with no 32-bit version like with other executables
such as cmd.exe). It is executed under the “NT AUTHORITY\SYSTEM” (S-1-5-18) user.
“Winlogon.exe” provides interactive support for interactive logons13.

Overall, “winlogon.exe” manages user interactions which are related to the security of the
system. Among them are: coordination of the logon flow, handling logout (aka logoff), starting
“LogonUI.exe”14, allowing the alteration of the ussr’s password and locking/unlocking the
server/workstation15. In order to obtain user information for logon “winlogon.exe” uses
credentials providers which are loaded by “LogonUI.exe” - more on them in a future writeup.
For authenticating the user “winlogon.exe” gets help from “lsass.exe”.

In its initialization phase “winlogon.exe” registers the “CTRL+ALT+DEL” secure attention
sequence16 before any application can do that. Also, “winlogon.exe” creates three desktops
within WinSta0: “Winlogon Desktop” (it is the desktop that the user is switched to when SAS is
received), “Application Desktop” (this is the desktop created for the logon session of the user)
and “ScreenSaver Desktop” (this is the desktop used when a screensaver is running). For more
information I suggest reading “Initializing Winlogon”17.

Before any logon is performed to the system, the visible desktop is Winlogon’s. Moreover, the
number of instances that we expect to have is one for each interactive logon session that is
present (as the number of “explorer.exe”) as minimum and in some case another one which is
for the next session that can be created - as seen in the screenshot below.

Lastly, I think it is a good idea to go over the reference implementation in ReactOS for
“winlogon.exe”18.

18 https://github.com/reactos/reactos/tree/2752c42f0b472f2db873308787a8b474c4738393/base/system/winlogon
17 https://learn.microsoft.com/en-us/windows/win32/secauthn/initializing-winlogon
16 https://medium.com/@boutnaru/security-sas-secure-attention-sequence-da8766d859b5
15 https://www.microsoftpressstore.com/articles/article.aspx?p=2228450&seqNum=8
14https://medium.com/@boutnaru/the-windows-process-journey-logonui-exe-windows-logon-user-interface-host-4b5b8b6417cb
13 https://learn.microsoft.com/en-us/windows/win32/secgloss/w-gly

14

https://github.com/reactos/reactos/tree/2752c42f0b472f2db873308787a8b474c4738393/base/system/winlogon
https://learn.microsoft.com/en-us/windows/win32/secauthn/initializing-winlogon
https://medium.com/@boutnaru/security-sas-secure-attention-sequence-da8766d859b5
https://www.microsoftpressstore.com/articles/article.aspx?p=2228450&seqNum=8
https://medium.com/@boutnaru/the-windows-process-journey-logonui-exe-windows-logon-user-interface-host-4b5b8b6417cb
https://learn.microsoft.com/en-us/windows/win32/secgloss/w-gly

userinit.exe (Userinit Logon Application)
“userinit.exe” is an executable which is located executable is located at
“%windir%\System32\userinit.exe“ (On 64 bit systems there is only a 64 bit there is also a 32 bit
version located at “%windir%\SysWOW64\userinit.exe”). It is started by the “winlogon.exe” - as
seen in the screenshot below (taken from ProcMon). Also, “userinit.exe” is executed with the
permissions of the user which is logging in to the system.

Overall, “userinit.exe” is responsible for loading the user’s profile and executing startup
applications while the logon process of the user is being performed. Thus, it will execute logon
scripts19.

“C:\Windows\System32\userinit.exe” is defined by default as the executable for the UserInit
phase under the “userinit” key in the registry20 - as shown in the screenshot below (taken from
“regedit.exe”). Moreover, “userinit.exe” runs the shell of the logged on user, which is by default
“explorer.exe” as configured in the registry under the “shell” key21 - as shown in the screenshot
below (taken from “regedit.exe”).

I think it is a good idea to go over the reference implementation in ReactOS for “userinit.exe”
(https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/syste
m/userinit).

21 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\Shell
20 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\UserInit
19 https://www.minitool.com/news/userinit-exe.html

15

https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/system/userinit
https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/system/userinit
https://www.minitool.com/news/userinit-exe.html

dwm.exe (Desktop Window Manager)
“dwm.exe” (Desktop Window Manager) is the executable which handles different tasks in the
display process of the Windows UI like rendering effects. Among those efforts are: live taskbar
thumbnails, Flip3D, transparent windows and more22. The executable is located at
“%windir%\System32\dwm.exe” (On 64 bit systems there is only a 64 bit version with no 32 bit
version like with other executables such as cmd.exe).

Thus, we can think about “dwm.exe” as a “compositing windows manager”. A “windows
manager” is computer software that controls the placement and appearance of a window as part
of a “window system” in a GUI environment23. So, a “compositing windows manager” is a
“window manager” that provides applications with an off-screen buffer for each window. The
goal of the manager is to composite all the windows’ buffers into an image representing the
screen and commit it to the display memory24.

The desktop composition feature was introduced in Windows Vista. It changed the way
applications display pixels on the screen (as it was until Windows XP). When desktop
composition is enabled, individual windows no longer draw directly to the screen (or primary
display device). Their drawings are redirected to off-screen surfaces in video memory, which are
then rendered into a desktop image and presented on the display.

For more information I suggest reading the following links
https://learn.microsoft.com/en-us/windows/win32/dwm/dwm-overview and
https://learn.microsoft.com/en-us/archive/blogs/greg_schechter/under-the-hood-of-the-desktop-w
indow-manager.

Under Windows 10, there is one instance of “dwm.exe” for each session (excluding session 0).
The parent process for each “dwm.exe” is “winlogon.exe”. The user which is associated with the
security token of each “dwm.exe” has a the pattern of “Window
Manager\DWM-{SESSION_ID}” and a SID of pattern “S-1–5–90–0-{SESSION_ID}” as shown
in the screenshot below (taken from Process Explorer).

24 https://en.wikipedia.org/wiki/Compositing_window_manager
23 https://en.wikipedia.org/wiki/Window_manager
22 https://learn.microsoft.com/en-us/windows/win32/dwm/dwm-overview

16

https://learn.microsoft.com/en-us/windows/win32/dwm/dwm-overview
https://learn.microsoft.com/en-us/windows/win32/dwm/dwm-overview
https://learn.microsoft.com/en-us/archive/blogs/greg_schechter/under-the-hood-of-the-desktop-window-manager
https://learn.microsoft.com/en-us/archive/blogs/greg_schechter/under-the-hood-of-the-desktop-window-manager
https://learn.microsoft.com/en-us/archive/blogs/greg_schechter/under-the-hood-of-the-desktop-window-manager
https://en.wikipedia.org/wiki/Compositing_window_manager
https://en.wikipedia.org/wiki/Window_manager
https://learn.microsoft.com/en-us/windows/win32/dwm/dwm-overview

17

LogonUI.exe (Windows Logon User Interface Host)
“LogonUI.exe” (Windows Logon User Interface Host) is responsible for the graphical user
interface which asks the user to logon into the system (aka logon screen/lock screen). The
executable file is located at “%SystemRoot%\System32\LogonUI.exe” (On 64 bit systems there
is only a 64 bit version with no 32 bit version like with other executables such as cmd.exe).

Moreover, “LogonUI.exe” is executed under the Local System user (S-1–5–18) for every session
(excluding session 0). “winlogon.exe” is the process which is responsible for running
“LogonUI.exe” as we can see in the screenshot below, which was taken from Process Monitor25.
Also, if you want to see how “LogonUI.exe” GUI looks in different versions of Windows26.

In the perspective of the data flow between “LogonUI.exe” and “winlogon.exe” the basic phases
are as follows (after “LogonUI.exe” was launched by “winlogon.exe”). “LogonUI.exe” gets
credentials from the user (like username and password) and sends them to “winlogon.exe”.
“winlogon.exe” performs the authentication (since Windows Vista it is done using a credential
provider, before that it was done by msgina.dll). If the authentication process succeeds, it sends a
message back to “LogonUI.exe” to indicate that the user has been authenticated27. We will get
deeper into this flow after talking about “winlogon.exe”, sessions, ALPC (which is the
communication line between the processes) and more.

In addition, settings for LogonUI.exe are stored in the registry in the following branch:
“HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Authentication\
LogonUI”. Among those settings we can find the user list that should be shown, the last user that
logged-on and the background image. Lastly, if you want to see a reference code for
“LogonUI.exe” you can check out ReactOS28.

28 https://github.com/reactos/reactos/tree/3647f6a5eb633b52ef4bf1db6e43fc2b3fc72969/base/system/logonui
27https://learn.microsoft.com/en-us/windows-server/security/windows-authentication/credentials-processes-in-windows-authentication
26 https://media.askvg.com/articles/images3/Windows_Login_Screen.png
25 https://learn.microsoft.com/en-us/sysinternals/downloads/procmon

18

https://github.com/reactos/reactos/tree/3647f6a5eb633b52ef4bf1db6e43fc2b3fc72969/base/system/logonui
https://learn.microsoft.com/en-us/windows-server/security/windows-authentication/credentials-processes-in-windows-authentication
https://media.askvg.com/articles/images3/Windows_Login_Screen.png
https://learn.microsoft.com/en-us/sysinternals/downloads/procmon

explorer.exe (Windows Explorer)
“explorer.exe” is an executable which is the “Windows Explorer”. The executable is located at
“%windir%\explorer.exe (On 64 bit systems there is also a 32 bit version located in
%windir%\SysWOW64\explorer.exe). It is responsible for handling elements of the graphical
user interface in Windows (including the taskbar, start menu, and desktop), the “File Explorer”
and more. Thus, we can think about it as a graphical shell29.

In case we terminate “explorer.exe” the taskbar will disappear and also the desktop both the
shortcuts and the wallpaper itself30. For more understanding about “exeplorer.exe” I think it is a
good idea to go over the reference implementation in ReactOS31.

Every time a user logins interactively “explorer.exe” is executed under the user which logged on
to the system32. The process which starts “explorer.exe” is “userinit.exe” (I will post on it in the
near future) - as can be seen in the screenshot below.

I also suggest going over the following link https://ss64.com/nt/explorer.html to checkout all the
arguments that can be passed to “exeplorer.exe” while launching it. There are also several
examples of usage there. By the way, it seems that Microsoft wants to decouple features from
“explorer.exe” in order to make Windows 11 faster33.

33https://www.windowslatest.com/2022/12/22/microsoft-wants-to-make-windows-11-faster-by-decoupling-features-from-explorer-exe/
32 https://learn.microsoft.com/en-us/windows-server/security/windows-authentication/windows-logon-scenarios
31 https://github.com/reactos/reactos/tree/81db5e1da884f76e6cee66b8cb1c7a2f6ff791eb/base/shell/explorer
30 https://copyprogramming.com/howto/what-happens-if-i-end-the-explorer-exe-process
29 https://www.pcmag.com/encyclopedia/term/explorerexe

19

https://ss64.com/nt/explorer.html
https://www.windowslatest.com/2022/12/22/microsoft-wants-to-make-windows-11-faster-by-decoupling-features-from-explorer-exe/
https://learn.microsoft.com/en-us/windows-server/security/windows-authentication/windows-logon-scenarios
https://github.com/reactos/reactos/tree/81db5e1da884f76e6cee66b8cb1c7a2f6ff791eb/base/shell/explorer
https://copyprogramming.com/howto/what-happens-if-i-end-the-explorer-exe-process
https://www.pcmag.com/encyclopedia/term/explorerexe

svchost.exe (Host Process for Windows Services)
“svchost.exe” is probably the builtin executable which has the most instances (for example 78 on
the my testing VM) among all the running processes in Windows. We can split its name to “Svc”
and “Host”, that is service host which hits its responsibility (more on that later).

The executable “svchost.exe” is located in %windir%\System32\svchost.exe. In case we are
talking about the 64 bit version of Windows, there is also %windir%\SysWOW64\svchost.exe
(which is a 32 bit version). Both of the files are signed digitally by Microsoft. It was introduced
during Windows 2000, even though there was support for “shared service processes” already in
Windows NT 3.1 (more on this in the following paragraphs).

Due to the fact, many of the Windows’ services (you can read on Wndows’ Services on
https://medium.com/@boutnaru/windows-services-part-2-7e2bdab5bce4) are implemented as
DLLs (Dynamic Link Libraries) there is a need for an executable to host them. Thus, you can
think about “svchost.exe” as the implementation of “shared service process” - A process which
hosts/executes/runs multiple services in a single memory address space.

The configuration of services is stored in the registry
(“HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services”), for each service which
is hosted the name of the DLL is stored under the “Parameter” subkey in a value named
“ServiceDll”. For example, in the case of the DHCP client is
“HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Dhcp\Parameters\ServiceD
ll” - as shown in the screenshot below. The ImagePath (which stores the path to the executable to
run when starting the service) will be “svchost.exe” with a command line parameter of “-k” and
the name of the service groups (like netsvcs, Dcomlaunch, utcsvc, and LocalServiceNoNetwork,
LocalSystemNetworkRestricted).

At the end services are splitted into different groups, every group is hosted by one host process
which is a single instance of “svchost.exe”. If we want to see which services are hosted on which
“svchost.exe” you can use tools like “Process Explorer” and “tasklist” - as you can see in the
screenshot below. The configuration of which services are part of what group we can see at
“HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Svchost”
(on my test VM a total of 49 groups are defined).

It is important to know that from Windows 10 (version 1903) on systems with more than 3.5GB
or RAM by default there is no grouping. That is, every service will be executed in a single
instance of “svchost.exe” for better security and reliability. Of course there are exceptions for
that34.

34 https://learn.microsoft.com/en-us/windows/application-management/svchost-service-refactoring

20

https://medium.com/@boutnaru/windows-services-part-2-7e2bdab5bce4
https://learn.microsoft.com/en-us/windows/application-management/svchost-service-refactoring

21

ctfmon.exe (CTF Loader)
“ctfmon.exe” is a user-mode process which is executed from the following location
%SystemRoot%\System32\ctfmon.exe. If you are using a 64 bit version of Windows, there is
also a 32 bit version of “ctfmon.exe” located at C:\Windows\SysWOW64\ctfmon.exe. By
parsing the file information we can see that it is described as a “CTF Loader”. CTF stands for
“Collaboration Translation Framework”, it is used by Microsoft Office.

The goal of “ctfmon.exe” is to provide different input capabilities for users such as speech and
handwriting recognition. By the way, it will run even if you are not using Microsoft Office.

“Ctfmon.exe” is launched as a child process of the service TabletInputService ("Touch Keyboard
and Handwriting Panel Service"), which is hosted by “svchost.exe” - as shown in the screenshot
below. Thus, if we want to stop “ctfmon.exe” we can just disable/stop that service. For more
information about what is “svchost.exe” you can read the following link
https://medium.com/@boutnaru/the-windows-process-journey-svchost-exe-host-process-for-win
dows-services-b18c65f7073f.

22

https://medium.com/@boutnaru/the-windows-process-journey-svchost-exe-host-process-for-windows-services-b18c65f7073f
https://medium.com/@boutnaru/the-windows-process-journey-svchost-exe-host-process-for-windows-services-b18c65f7073f

audiodg.exe (Windows Audio Device Graph
Isolation)
“audiodg.exe” is an executable which is part of the Windows shared-mode audio engine as
described next. The executable is located at “%windir%\System32\audiodg.exe” (On 64 bit
systems there is only a 64 bit version with no 32 bit version — in contrast to other executables
such as cmd.exe). The process is running under the user “NT AUTHORITY\LOCAL
SERVICE”.

In Windows the audio engine runs in user mode. We have the "Windows Audio" service which is
implemented in AudioSrv.dll, it is hosted using the “svchost.exe” process. The service launches a
helper process “audiodg.exe”35. All of that is demonstrated in the screenshot below. It runs in a
different login session from the logged on user (isolated) in order to that content and plug-ins
cannot be modified36.

Thus, we can say that “audiodg.exe” is being utilized for all audio processing37. It hosts the audio
engine for Windows so all the digital signal processing (DSP) is performed by “audiodg.exe”.
Vendors can install their own audio effects which will be processed by “audiodg.exe”38. There
should be one instance only of “audiodg.exe” at a specific time.

38https://answers.microsoft.com/en-us/windows/forum/all/audiodgexe-high-cpu-and-memory/42b3f122-87bf-45cd-8ea7-08abafa9442c
37 https://answers.microsoft.com/en-us/windows/forum/all/windows-10-audiodgexe/af1b70e0-06fe-4952-8205-b6191ccb8882
36 https://answers.microsoft.com/en-us/windows/forum/all/audiodgexe/0c86aef4-81a5-480e-9389-d9652fee1d21
35 https://learn.microsoft.com/en-us/windows-hardware/drivers/dashboard/audio-measures

23

https://answers.microsoft.com/en-us/windows/forum/all/audiodgexe-high-cpu-and-memory/42b3f122-87bf-45cd-8ea7-08abafa9442c
https://answers.microsoft.com/en-us/windows/forum/all/windows-10-audiodgexe/af1b70e0-06fe-4952-8205-b6191ccb8882
https://answers.microsoft.com/en-us/windows/forum/all/audiodgexe/0c86aef4-81a5-480e-9389-d9652fee1d21
https://learn.microsoft.com/en-us/windows-hardware/drivers/dashboard/audio-measures

rdpclip.exe (RDP Clipboard Monitor)
“rdpclip.exe” (RDP Clipboard Monitor) is responsible for managing the shared clipboard
between the local computer and the remote desktop which the user is interacting with39. The
executable file is located at “%windir%\System32\rdpclip.exe” (On 64 bit systems there is only a
64 bit version with no 32 bit version like with other executables such as cmd.exe).

By enabling the “Remote Desktop” capability40 on Windows it allows remote management of a
system using a GUI (graphical user interface) by leveraging the Remote Desktop Protocol
(RDP). The default port of the protocol is TCP/3389. For more information about the protocol I
suggest reading the following link
https://www.cyberark.com/resources/threat-research-blog/explain-like-i-m-5-remote-desktop-pro
tocol-rdp.

“rdpclip” is started when a new remote desktop session is created by the service which is called
“Remote Desktop Services” - as shown in the screenshot below. Fun fact, the old display name
of the service was “Terminal Services” which was changed while the service name is still
“TermService”.

Lastly, the description of the service states “it allows users to connect interactively to a remote
computer. Remote Desktop and Remote Desktop Session Host Server depend on this service. To
prevent remote use of this computer, clear the checkboxes on the Remote tab of the System
properties control panel item”.

40https://learn.microsoft.com/en-us/windows-server/remote/remote-desktop-services/clients/remote-desktop-allow-access
39 https://www.winosbite.com/rdpclip-exe/

24

https://www.cyberark.com/resources/threat-research-blog/explain-like-i-m-5-remote-desktop-protocol-rdp
https://www.cyberark.com/resources/threat-research-blog/explain-like-i-m-5-remote-desktop-protocol-rdp
https://learn.microsoft.com/en-us/windows-server/remote/remote-desktop-services/clients/remote-desktop-allow-access
https://www.winosbite.com/rdpclip-exe/

smartscreen.exe (Windows Defender SmartScreen)
“smartscreen.exe” is an executable which is the “Windows Defender SmartScreen”. The
executable is located at “%windir%\System32\smartscreen.exe” (On 64 bit systems there is only
a 64 bit version with no 32 bit version — in contrast to other executables such as cmd.exe).

SmartScreen is a cloud-based anti-phishing/anti-malware component which is included in
different Microsoft products such as: Windows, Internet Explorer and Microsoft Edge
(https://en.wikipedia.org/wiki/Microsoft_SmartScreen).

Microsoft Defender SmartScreen helps with determining whether a site is potentially malicious
and by determining if a downloaded application/installer is potentially malicious. We can sum up
the benefits of SmartScreen as follows: anti-phishing/anti-malware support, reputation-based
URL/application protection, operating system integration, ease of management using group
policy/Microsoft Intune and blocking URLs associated with potentially unwanted applications.
(https://learn.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-smarts
creen/microsoft-defender-smartscreen-overview).

In order to demonstrate the working of SmartScreen I have tried to download (using Edge) - you
can see the warning in the left side of the screenshot below. Moreover, after downloading it using
a different browser I have executed the EICAR test file - you can see the result in the left side of
the screenshot below. By the way, the EICAR (European Institute from Computer Antivirus
Research) test file was created to test the response of AV software
(https://en.wikipedia.org/wiki/EICAR_test_file).

Lastly, we can enable/disable SmartScreen using the settings window, bot for the OS/browser
(https://www.digitalcitizen.life/how-disable-or-enable-smartscreen-filter-internet-explorer-or-win
dows-8/).

25

https://en.wikipedia.org/wiki/Microsoft_SmartScreen
https://learn.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-smartscreen/microsoft-defender-smartscreen-overview
https://learn.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-smartscreen/microsoft-defender-smartscreen-overview
https://en.wikipedia.org/wiki/EICAR_test_file
https://www.digitalcitizen.life/how-disable-or-enable-smartscreen-filter-internet-explorer-or-windows-8/
https://www.digitalcitizen.life/how-disable-or-enable-smartscreen-filter-internet-explorer-or-windows-8/

ApplicationFrameHost.exe
The “ApplicationFrameHost.exe” executable is located at the following directory -
”%windir%\system32\ApplicationFrameHost.exe”. On 64-bit systems there is only a 64-bit
version with no 32 bit version — in contrast to other executables such as cmd.exe.

Overall, the goal of “ApplicationFrameHost.exe” is to display the frames (windows) of the
applications whether we are in desktop/tablet mode41. By the way, if we kill
“ApplicationFrameHost.exe” all the UWP applications will be closed also - as we can see in the
screenshot below.

There is one instance per session for the “ApplicationFrameHost.exe” in case one or more
“Window Store App” which is also known as “Universal Windows Platform App”42 - I will
elaborate about them in a separate writeup. An example for a UWP app is the Calculator
(“%windir%\system32\calc.exe”). Also, “ApplicationFrameHost.exe” is running with the
permissions of the logged on user (that from whom the session was created).

42 https://www.file.net/process/applicationframehost.exe.html
41 https://www.howtogeek.com/325127/what-is-application-frame-host-and-why-is-it-running-on-my-pc/

26

https://www.file.net/process/applicationframehost.exe.html
https://www.howtogeek.com/325127/what-is-application-frame-host-and-why-is-it-running-on-my-pc/

RuntimeBroker.exe
“RuntimeBroker.exe” is an executable which that is located at
“%windir%\System32\RuntimeBroker.exe” (On 64 bit systems there is only a 64-bit version with
no 32-bit version — in contrast to other executables such as cmd.exe).

“RuntimeBroker.exe” is running the permissions of the user (from whom the session was
created). “RuntimeBroker.exe” is triggered from execution if the Windows Store is opened or
any installed UWP app is started. By the way UWP apps are also known as Windows
App/Windows Store App/Metro App43.

Overall, “RuntimeBroker.exe” is responsible for managing the permissions for “Windows Store
App”. We can think about it as a middleman between the application and operating system
capabilities44.

Thus, when an UWP application tries to access a specific OS resource “RuntimeBroker.exe”
checks if the application has the appropriate permissions for that. In case it does not,
“RuntimeBroker.exe” can ask the user to grant the permissions. We can modify the permissions
for different applications using the “Settings” screen (Privacy->App permissions) - as shown in
the screenshot below.

44https://support.microsoft.com/en-us/windows/runtime-broker-is-using-too-much-memory-ca6ed4e3-2a36-964c-4d2e-8c93980d8a98
43 https://www.file.net/process/runtimebroker.exe.html

27

https://support.microsoft.com/en-us/windows/runtime-broker-is-using-too-much-memory-ca6ed4e3-2a36-964c-4d2e-8c93980d8a98
https://www.file.net/process/runtimebroker.exe.html

logoff.exe (Session Logoff Utility)
“logoff.exe” (Session Logoff Utility) is a command line tool that allows logging off a user from a
session. The session could be the current session in which the command is executed, a specific
session identified by a number or a remote session on a different server45. The executable file is
located at “%windir%\System32\logoff.exe”.

Moreover, an administrator can set a script/executable to be executed when the user is logging
off. This setting can be configured using a local policy/group policy and is called “Logoff script).
Alos, this configuration is part of the “User Configuration -> Windows Settings -> Scripts” - as
shown in the screenshot below46. Lastly, we can also go over a reference code for “logoff.exe”
from ReactOS47.

47 https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/logoff

46https://social.technet.microsoft.com/Forums/en-US/f9f011e2-59fc-42d3-a1a4-251536ce8287/i-need-to-automatically-run-an-app-at-log
off?forum=win10itprosetup

45 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/logoff

28

https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/logoff
https://social.technet.microsoft.com/Forums/en-US/f9f011e2-59fc-42d3-a1a4-251536ce8287/i-need-to-automatically-run-an-app-at-logoff?forum=win10itprosetup
https://social.technet.microsoft.com/Forums/en-US/f9f011e2-59fc-42d3-a1a4-251536ce8287/i-need-to-automatically-run-an-app-at-logoff?forum=win10itprosetup
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/logoff

cscript.exe (Microsoft ® Console Based Script Host)
“cscript.exe” is the “Microsoft ® Console Based Script Host” which is a command line version
of the “Windows Script Host”. It also allows setting script properties using command line
options48.

Also, “cscript.exe” is a PE binary file located at “%windir%\System32\cscript.exe”. On a 64-bit
system (with a 64-bit OS installed) there is also a 32-bit based version located at
“%windir%\SysWOW64\cscript.exe”.

Overall, the “Windows Script Host” (WSH) is an automation technology that enables scripting
which was first introduced in Windows 95 (after build 950a) and became a standard component
since Windows 98 (build 1111). It has support for different language engines, by default it
supports JScript (*.js/*.jse) and VBScript (*.vbs/*.vbe) out of the box49.

Moreover, users can also install other scripting engines for WSH like Perl and Python . By using
WSH we can also leverage COM (). In VBScript we can do so by calling CreateObject() and in
JSCript we can use an ActivexObject or call WSCript.CreateObject()50.

When using “cscript.exe” to run a script to run in a command-line environment we don’t have to
use administrator permissions. Alos, “cscript.exe” has multiple command line options for
different usages like: interactive mode, debugging mode, passing arguments to the script and
more51. Lastly, in order to demonstrate the usage of “cscript.exe” I have created a simple script
and executed it - as shown in the screenshot below. We can also go over a reference
implementation of “cscript.exe” for RactOS52.

52https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/cmdutils/cscript
51 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/cscript
50 https://learn.microsoft.com/vi-vn/windows/win32/com/using-com-objects-in-windows-script-host
49 https://en.wikipedia.org/wiki/Windows_Script_Host
48https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-xp/bb490887(v=technet.10)?redirectedfrom=MSDN

29

https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/cmdutils/cscript
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/cscript
https://learn.microsoft.com/vi-vn/windows/win32/com/using-com-objects-in-windows-script-host
https://en.wikipedia.org/wiki/Windows_Script_Host
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-xp/bb490887(v=technet.10)?redirectedfrom=MSDN

wscript.exe (Microsoft ® Windows Based Script
Host)
“wscript.exe” is the “Microsoft ® Windows Based Script Host” which provides an environment
for executing scripts in a variety of languages53. It also allows setting script properties using
command line options54.

Overall, the “Windows Script Host” (WSH) is an automation technology that enables scripting
which was first introduced in Windows 95 (after build 950a) and became a standard component
since Windows 98 (build 1111). It has support for different language engines, by default it
supports JScript (*.js/*.jse) and VBScript (*.vbs/*.vbe) out of the box55.

Also, “wscript.exe” is a PE binary file located at “%windir%\System32\wscript.exe”. On a
64-bit system (with a 64-bit OS installed) there is also a 32-bit based version located at
“%windir%\SysWOW64\wscript.exe”.

“wscript.exe” allows running the scripts in GUI mode in contrast to “cscript” which is CLI
mode56. Gui mode means that graphical components could be displayed as the script is being
executed - as shown in the screenshot below.

Lastly, in case you want to see a reference implementation of “wscript.exe” I suggest going over
the implementation which is part of ReactOS57.

57https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/cmdutils/wscript
56https://medium.com/@boutnaru/the-windows-process-journey-cscript-exe-microsoft-console-based-script-host-5878ba9354a0
55 https://en.wikipedia.org/wiki/Windows_Script_Host
54 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/wscript
53https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/hh875526(v=ws.11)

30

https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/cmdutils/wscript
https://medium.com/@boutnaru/the-windows-process-journey-cscript-exe-microsoft-console-based-script-host-5878ba9354a0
https://en.wikipedia.org/wiki/Windows_Script_Host
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/wscript
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/hh875526(v=ws.11)

utilman.exe (Utility Manager)
“utilman.exe” is the “Utility Manager” which is a PE binary file located at
“%windir%\System32\utilman.exe”. On 64-bit systems there is also a 32-bit version located on
“%windir%\SysWOW64\utilman.exe”.

Overall, “utilman.exe” can be started by clicking the icon of “Ease of Access” or by using the
keyboard shortcut “WinKey+U”. When using one of those methods while the computer is
locked, “utilman.exe” is started by “winlogon.exe” with the permissions of the “LocalSystem” -
as shown in the screenshot below. By the way, due to the high level of permissions in use
replacing “utilman.exe” is a common trick in order to reset the administrator password in
Windows58.

Moreover, “utilman.exe” allows accessing the following capabilities: narrator, magnifier,
onscreen keyboard, high contrast, sticky keys and filter keys. Narrator is the screen reading
application made for blind/visually impaired users59. Magnifier is an application that allows users
to enlarge the screen content60.

Also, sticky keys allows users to use modifier keys (like Ctrl, Shift, Alt and WinKey) without the
need of pressing them constantly61.. Filter keys is a feature that adjusts the keyboard response
and ignores repeated keystrokes caused by inaccurate or slow finger movements62.

Lastly, in case you want to see a reference implementation of “osk.exe” I suggest going over the
implementation which is part of ReactOS63.

63 https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/utilman
62 https://helpdeskgeek.com/how-to/what-are-filter-keys-and-how-to-turn-them-off-in-windows/
61 https://geekflare.com/using-sticky-keys-in-windows/

60https://support.microsoft.com/en-us/windows/use-magnifier-to-make-things-on-the-screen-easier-to-see-414948ba-8b1c-d3bd-8
615-0e5e32204198

59https://support.microsoft.com/en-us/windows/complete-guide-to-narrator-e4397a0d-ef4f-b386-d8ae-c172f109bdb1
58 https://learn.microsoft.com/en-us/answers/questions/187973/windows-recovery-cmd

31

https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/utilman
https://helpdeskgeek.com/how-to/what-are-filter-keys-and-how-to-turn-them-off-in-windows/
https://geekflare.com/using-sticky-keys-in-windows/
https://support.microsoft.com/en-us/windows/use-magnifier-to-make-things-on-the-screen-easier-to-see-414948ba-8b1c-d3bd-8615-0e5e32204198
https://support.microsoft.com/en-us/windows/use-magnifier-to-make-things-on-the-screen-easier-to-see-414948ba-8b1c-d3bd-8615-0e5e32204198
https://support.microsoft.com/en-us/windows/complete-guide-to-narrator-e4397a0d-ef4f-b386-d8ae-c172f109bdb1
https://learn.microsoft.com/en-us/answers/questions/187973/windows-recovery-cmd

osk.exe (Accessibility On-Screen Keyboard)
“osk.exe” is the “Accessibility On-Screen Keyboard” which presents a virtual keyboard layout
inside a resizable window - as shown in the screenshot below. The virtual keyboards enable the
user clicking/hovering/scanning using a mouse/joystick in order to select/activate keys64.

Moreover, “osk.exe” has a 101/102/106 key layout. “osk.exe” is a PE binary located at
“%windir%\System32\osk.exe”. It is bundled with Windows and can provide some features for
users with limited mobility65.

Thus, we don’t need a touch screen in order to interact with “osk.exe”66. By the way, “osk.exe” is
not the only virtual keyboard available as part of Windows, there is also “TabTip.exe” - but more
on there is a separate writeup.

Lastly, in case you want to see a reference implementation of “osk.exe” I suggest going over the
implementation which is part of ReactOS67.

67 https://github.com/reactos/reactos/tree/47f3a4e144b897da0e0e8cb08c2909645061dec9/base/applications/osk
66https://support.microsoft.com/en-us/windows/use-the-on-screen-keyboard-osk-to-type-ecbb5e08-5b4e-d8c8-f794-81dbf896267a
65 https://www.processlibrary.com/en/directory/files/osk/21965/
64 https://www.file.net/process/osk.exe.html

32

https://github.com/reactos/reactos/tree/47f3a4e144b897da0e0e8cb08c2909645061dec9/base/applications/osk
https://support.microsoft.com/en-us/windows/use-the-on-screen-keyboard-osk-to-type-ecbb5e08-5b4e-d8c8-f794-81dbf896267a
https://www.processlibrary.com/en/directory/files/osk/21965/
https://www.file.net/process/osk.exe.html

alg.exe (Application Layer Gateway Service)
“alg.exe” is the “Application Layer Gateway Service” (ALG) which is configured as a Windows
service. Based on the description of the service it provides support for 3rd party protocol plug-ins
for Internet Connection Sharing (ICS). The service is executed with the permission of the
“LocalService” user. “alg.exe” is a PE binary which is stored in the following location:
“%windir%\System32\alg.exe”.

Generally, an “Application Layer Gateway” (ALG) allows a gateway to parse payloads and take
actions such as allow/drop/other based on the data contained in the payloads68. Thus, ALG’s
plugins can modify data in packets, think about things like IP addresses and port numbers69.

Lastly, “alg.exe” is started by “services.exe” with the permission of “NT AUTHORITY\LOCAL
SERVICE” user. There should be at most only one instance of “alg.exe”. “alg.exe” parses
information about supported plugins from “HKLM\SOFTWARE\Microsoft\ALG\ISV”70. We can
see in the screenshot below that there is a handle to that registry location.

70 https://www.sigma-uk.net/tech/windows_ftp_alg_iis
69 https://en.wikipedia.org/wiki/Application-level_gateway
68 https://www.juniper.net/documentation/us/en/software/junos/alg/alg.pdf

33

https://www.sigma-uk.net/tech/windows_ftp_alg_iis
https://en.wikipedia.org/wiki/Application-level_gateway
https://www.juniper.net/documentation/us/en/software/junos/alg/alg.pdf

DrvInst.exe (Driver Installation Module)
“DrvInst.exe” is a PE executable located at “%windir%\System32\drvinst.exe”, it is known as
“Driver Installation Module”. Since Windows Vista when PnP (Plug and Play) manager detects a
new device “DrvInst.exe” is started. It is used for searching and installing the relevant driver for
the new device detected71.

“DrvInst.exe” can also be used for installing drivers while installing a software package. Let us
take for example the installation of “OpenVPN Connect”72.

Thus, as with most VPN (Virtual Private Network) solutions there is a need to install a TAP
driver, which is a virtual network device73. This causes “services.exe” to launch a new process
using the following arguments “C:\Windows\system32\svchost.exe -k DcomLaunch -p -s
DeviceInstall”, which is part of the “DCOM Server Process Launcher”. It is executed with the
permission of the “LocalSystem” user.

Moreover, by passing as an argument “DeviceInstall” “svchost.exe” loads
“%windir%\System32\umpnpmgr.dll”, which is the “User-mode Plug-and-Play Service”. This
instance of “svchost.exe” is the one that starts “DrvInst.exe”. It also loads
“%windir%\System32\devrtl.dll” (Device Management Run Time Library) - as shown in the
screenshot below.

73 https://www.techradar.com/vpn/what-is-a-tap-adapter
72 https://openvpn.net/client/
71https://learn.microsoft.com/en-us/windows-hardware/drivers/install/debugging-device-installations-with-a-user-mode-debugger

34

https://www.techradar.com/vpn/what-is-a-tap-adapter
https://openvpn.net/client/
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/debugging-device-installations-with-a-user-mode-debugger

runas.exe (Run As Utility)
“runas.exe” is an executable aka “Run As Utility”, which is located at
“%windir%\System32\runsas.exe”. On 64 bit systems there there is also a 32-bit version  located
at “%windir%\SysWow64\runas.exe”.

Overall, “runas.exe” allows a user to execute specific programs/tools with different permissions
than the logged-on user. “runas.exe” also has multiple parameters that can be used like passing
credentials from a smartcard instead of a password, loading the user’s profile and more74.

Moreover, “runas.exe” is dependent on the “Secondary Logon” service. The description of the
service states that it “enables starting processes under alternate credentials. If this service is
stopped, this type of logon access will be unavailable. If this service is disabled, any services that
explicitly depend on it will fail to start”. As described if the service is disabled “runas.exe” will
fail - as shown in the screenshot below.

Thus, in case the “Secondary Logon” service can be started it is done with the following
command line: “%windir%\system32\svchost.exe -k netsvcs -p -s seclogon” with the
permissions of the “Local System” user. Also, in this case “svchost.exe” will load
“%windir%\System32\seclogon.dll” (Secondary Logon Service DLL).

74https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/cc771525(v=ws.11)

35

https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/cc771525(v=ws.11)

cmd.exe (Windows Command Processor)
“cmd.exe” is the “Windows Command Processor” which is the default CLI (command line
interface/interpreter) of Windows (and also reactOS). By the way, it is also known as “Command
Prompt”. It is the replacement of “command.com” which was relevant from MS-DOS to
Windows XP. In Windows NT/Windows 2000 and Windows XP there was both “cmd.exe” and
“command.com”75.

The executable is located at “%windir%\System32\cmd.exe”. On 64-bit systems there is also a
32-bit version located at “%windir%\SysWOW64\cmd.exe”. Also, “cmd.exe” allows the
execution of any script/executable installed on the system or one of the internal command which
included as part of “cmd.exe” like: “cd”, “copy” and “md”76.

Moreover, “cmd.exe” supports executing batch scripts - as shown in the screenshot below. I
suggest going through “Windows Batch Scripting” for more information77.

Lastly, for a reference of “cmd.exe” I suggest going over the implementation of “cmd.exe” as
part of ReacOS78.

78 https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/shell/cmd
77 https://en.wikibooks.org/wiki/Windows_Batch_Scripting
76 https://wishmesh.com/2014/09/ms-dos-cmd-exe-command-prompt-cd-md-copy/
75 https://www.computerhope.com/cmd.htm

36

https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/shell/cmd
https://en.wikibooks.org/wiki/Windows_Batch_Scripting
https://wishmesh.com/2014/09/ms-dos-cmd-exe-command-prompt-cd-md-copy/
https://www.computerhope.com/cmd.htm

conhost.exe (Console Window Host)
“conhost.exe” is an executable aka the “Console Window Host”, which is located at
“%windir%\System32\conhost.exe”. The goal of “conhost.exe” is to provide an interface
between “cmd.exe”79 and “explorer.exe”80.

Thus, “conhost.exe” is both the server application (for Windows Console API) and also the
classic Windows user interface for working with CLI (command line interface) application.
Historically, those were the job of “csrss.exe”81 but they were extracted for isolation and security
reasons82.

Moreover, one of the duties of “conhost.exe” is to provide the ability to “drag and drop”
folders/files into “cmd.exe”. By the way, every 3rd party application can use “conhost.exe”83.
When “conhost.exe” is started with the permissions of the user which “cmd.exe” was started
with.

Lastly, we can have multiple instances of “conhost.exe”. For each instance of “cmd.exe” (which
is not a descendant of another “cmd.exe”) there will be an instance of “conhost.exe”. Also, in
case of a 64-bit system even if a 32-bit “cmd.exe” an instance of a 64-bit “conhost.exe” is going
to be started. A demonstration of those points is shown in the screenshot below (taken using
“Process Explorer”).

83 https://www.lifewire.com/conhost-exe-4158039
82 https://learn.microsoft.com/en-us/windows/console/definitions
81 https://medium.com/@boutnaru/the-windows-process-journey-csrss-exe-client-server-runtime-subsystem-cb5fa34c47db
80 https://medium.com/@boutnaru/the-windows-process-journey-explorer-exe-windows-explorer-9a96bc79e183
79 https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b

37

https://www.lifewire.com/conhost-exe-4158039
https://learn.microsoft.com/en-us/windows/console/definitions
https://medium.com/@boutnaru/the-windows-process-journey-csrss-exe-client-server-runtime-subsystem-cb5fa34c47db
https://medium.com/@boutnaru/the-windows-process-journey-explorer-exe-windows-explorer-9a96bc79e183
https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b

tasklist.exe (Lists the Current Running Tasks)
“tasklist.exe” is an executable which is located at “%windir%\System32\tasklist.exe”. It allows
displaying the list of currently running processes on the system84. On 64-bit systems there is also
a 32-bit version located at “%windir%\SysWOW64\tasklist.exe”.

Moreover, a user with sufficient permissions can also list the processes of a remote system using
“tasklist.exe” by using the “/s” command line switch. For more information about the other
switches which are available please refer to https://ss64.com/nt/tasklist.html.

Overall, a user can display the following attributes for each displayed process: image name, pid,
session number, session name, cpu time, memory usage, user name, service name (if relevant),
window title (if relevant) and more.

Lastly, for a reference of “cmd.exe” I suggest going over the implementation of “cmd.exe” as
part of ReacOS85.

85 https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/cmdutils/tasklist
84 https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/cc730909(v=ws.11)

38

https://ss64.com/nt/tasklist.html
https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/cmdutils/tasklist
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/cc730909(v=ws.11)

rundll32.exe (Windows Host Process)
“rundll32.exe” is an executable aka the “Windows Host Process” (based on the description field
of the PE file), which is located at “%windir%\System32\rundll32.exe”. On a 64 bit-system the
file still has the same name (including the number 32) and a 32-bit version is located at
“%windir%\SysWOW64\rundll32.exe”.

Overall, the goal of “rundll32.exe” is to load a DLLs (Dynamic Link Libraries) and run a
functionality stored in those files86. The DLLs are loaded using “LoadLibraryExW”87.
“rundll32.exe” is digitally signed by Microsoft and shipped by default with the operating system.
By the way, there are also places that say “rundll32.exe” means “Run a DLL as an App”88.

The way is which we can call a function from a “*.dll” file is by passing the name of the file and
the name of the function. We can also pass arguments to a function while using “rundll32.exe”89.
An example of using “rundll32.exe” is shown in the screenshot below. Also, for more examples
of using “rundll32.exe” I suggest going over the following link
https://www.thewindowsclub.com/rundll32-shortcut-commands-windows. Lastly, for an
implementation reference of “rundll32.exe” I suggest going over the one in ReacOS90.

90 https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/system/rundll32
89 https://stmxcsr.com/micro/rundll-parse-args.html
88 https://www.file.net/process/rundll32.exe.html
87 https://www.cybereason.com/blog/rundll32-the-infamous-proxy-for-executing-malicious-code
86 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/rundll32

39

https://www.thewindowsclub.com/rundll32-shortcut-commands-windows
https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/system/rundll32
https://stmxcsr.com/micro/rundll-parse-args.html
https://www.file.net/process/rundll32.exe.html
https://www.cybereason.com/blog/rundll32-the-infamous-proxy-for-executing-malicious-code
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/rundll32

net.exe (Network Command)
“net.exe” is the “Net Command” which is a command line that allows managing different aspects
of the operating system such as: users, groups, services and network connections91. Also,
“net.exe” is a PE binary file located at “%windir%\System32\net.exe” which is signed by
Microsoft. On 64-bit based versions of Windows there is also a 32-bit version of the binary
located at “%windir%\SysWOW64\net.exe.

Overall, they are 19 sub commands in net: “accounts”, “computer”, “config”, “continue”, “file”,
“group”, “help”, “helpmsg”, localgroup”, “pause”, “session”, “share”, “start”, “statistics”,
“stop”, “time”, “use”, “user” and “view”. By using “net help” we can get an explanation about
each sub command. In the table below I have gathered a short description for each sub command
(excluding “net help”). Lastly, we can also go over a reference implementation of “net.exe” from
ReacOS92.

92 https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/network/net
91 https://attack.mitre.org/software/S0039/

40

https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/network/net
https://attack.mitre.org/software/S0039/

net1.exe (Net Command for the 21st Century)
“net1.exe” is known as the “Net Command for the 21st Century”93. It is a PE binary file that is
signed by Microsoft, which is located at “%windir%\system32\net1.exe”. On 64-bit versions of
Windows there is also a 32-bit version of the file located at “%windir%\SysWOW64\net1.exe”.

Overall, the “net1.exe” was created as a temporary fix for the Y2K problem that affected
“net.exe”94. There was an issue while using the command “net user [USERNAME] /times”
which is responsible for configuring the logon hours of the user95.

Thus, “net1.exe” is executed for specific functionality when “net.exe” is run96. For example
when calling “net time” an instance of “net1.exe” is started by “net.exe” using the command
“net1 time” - as seen in the screenshot below.

Lastly, “net1.exe” supports every command the “net.exe” supports. The issue with “net.exe” was
corrected in Windows XP, however “net1.exe” is still available today for backward
compatibility with old scripts that might use it97.

97 https://ss64.com/nt/net.html
96 https://attack.mitre.org/software/S0039/
95 https://web.archive.org/web/20140830150320/http://support.microsoft.com/kb/240195
94 https://www.lifewire.com/net-command-2618094
93 https://www.file.net/process/net1.exe.html

41

https://ss64.com/nt/net.html
https://attack.mitre.org/software/S0039/
https://web.archive.org/web/20140830150320/http://support.microsoft.com/kb/240195
https://www.lifewire.com/net-command-2618094
https://www.file.net/process/net1.exe.html

TabTip.exe (Touch Keyboard and Handwriting Panel)
“TabTip.exe” (Touch Keyboard and Handwriting Panel) is also known as “Tablet Text Input
Panel”. It is an interface developed by Microsoft which allows inputting text in different ways:
handwriting to text, speech to text and by clicking on the screen like a keyboard98.

The usage of “TabTip.exe” as a keyboard is very similar to “osk.exe”99. The main goal of
“TabTip.exe” is to provide handwriting input. This means that even applications that don’t have
this capability can use “TabTip.exe” to provide users with the ability of writing instead of
typing100 - as shown in the screenshot below.

Overall, “TabTip.exe” is a 64-bit PE binary located at “%ProgramFiles%\Common
Files\microsoft shared\ink\TabTip.exe”, which is digitally signed by Microsoft. When
“TabTip.exe” is launched it is started as a child process of the service TabletInputService (Touch
Keyboard and Handwriting Panel Service), similar to “ctfmon.exe”101 - as shown in the
screenshot below. This service is hosted by “svchost.exe”102, which loads the
“%windir%\System32\TabSvc.dll”.

102https://medium.com/@boutnaru/the-windows-process-journey-svchost-exe-host-process-for-windows-services-b1
8c65f7073f

101 https://medium.com/@boutnaru/the-windows-process-journey-ctfmon-exe-ctf-loader-148f10f5401
100 https://windowsreport.com/tabtip-exe/

99https://medium.com/@boutnaru/the-windows-process-journey-osk-exe-accessibility-on-screen-keyboard-7282369
5321e

98 https://www.file.net/process/tabtip.exe.html

42

https://medium.com/@boutnaru/the-windows-process-journey-svchost-exe-host-process-for-windows-services-b18c65f7073f
https://medium.com/@boutnaru/the-windows-process-journey-svchost-exe-host-process-for-windows-services-b18c65f7073f
https://medium.com/@boutnaru/the-windows-process-journey-ctfmon-exe-ctf-loader-148f10f5401
https://windowsreport.com/tabtip-exe/
https://medium.com/@boutnaru/the-windows-process-journey-osk-exe-accessibility-on-screen-keyboard-72823695321e
https://medium.com/@boutnaru/the-windows-process-journey-osk-exe-accessibility-on-screen-keyboard-72823695321e
https://www.file.net/process/tabtip.exe.html

fontdrvhost.exe (Usermode Font Driver Host)
On Windows 8.1 (and previous versions) the parsing of fonts takes place in a kernel driver
(atmfd.dll, yes they are Dlls which are executed in kernel mode). This was accessible via
graphical syscalls exported by win32k.sys, thus it created an attack surface that could lead to
privilege escalation. Thus, from Windows 10 the parsing code was moved to the restricted
user-mode process “fontdrvhost.exe”103

Overall, “fontdrvhost.exe” is an executable which is located at
“%windir%\System32\fontdrvhost.exe“ (On 64-bit systems there is also a 32-bit located at
“%windir%\SysWOW64\fontdrvhost.exe”). It is executed with the permissions of a user in the
following pattern: “Font Driver Host\UMFD[SessionID]”. Also, the SID of the user is in the
pattern of “S-1-5-96-[SessionID]” - as you can see in the screenshot below. Also,
“fontdrvhost.exe” is a PE binary that is digitally signed by Microsoft.

Moreover, on session 0 “fontdrvhost.exe” is started by “wininit.exe”104, in the following sessions
(1, 2 , etc) it is started by “winlogon.exe”105. Thus, the number of instances of “fontdrvhost.exe”
should be as the number of opened sessions on the Windows system. Lastly, UMDF stands for
“User Mode Font Driver”.

105https://medium.com/@boutnaru/the-windows-process-journey-winlogon-exe-windows-logon-application-88a1d4d
3e13c

104https://medium.com/@boutnaru/the-windows-process-journey-wininit-exe-windows-start-up-application-5581bfe
6a01e

103 https://googleprojectzero.blogspot.com/2021/01/in-wild-series-windows-exploits.html

43

https://medium.com/@boutnaru/the-windows-process-journey-winlogon-exe-windows-logon-application-88a1d4d3e13c
https://medium.com/@boutnaru/the-windows-process-journey-winlogon-exe-windows-logon-application-88a1d4d3e13c
https://medium.com/@boutnaru/the-windows-process-journey-wininit-exe-windows-start-up-application-5581bfe6a01e
https://medium.com/@boutnaru/the-windows-process-journey-wininit-exe-windows-start-up-application-5581bfe6a01e
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-windows-exploits.html

OpenWith.exe (Pick an App)
“OpenWith.exe” is also known as the “Pick an App”, it is located at
“%windir%\System32\OpenWith.exe” and it is digitally signed by Microsoft. On 64-bit systems
there is also a 32-bit version located at “%windir%\SysWOW64\OpenWith.exe”.

Overall, “OpenWith.exe” is used for selecting the application we want to open a file with a
specific extension - as shown in the screenshot below. You might expect that “exlorer.exe” is
going to start “OpenWith.exe”, however it is done by the “DCOM Server Process Launcher”
service which is hosted by “svchost.exe”106 - as shown in the screenshot below.

Moreover, due to the reason the hosting “svchost.exe” is running with the permissions of the
“LocalSystem” the creation of the “OpenWith.exe” process is done using the API
“CreateProcessWithUserW”107. It allows “svchost.exe” to execute “OpenWith.exe” with the
permissions of the logged on user (the same access token as “explorer.exe”).

At the end, when we select an app the next time a double click is identified “explorer.exe”108 is
going to start an instance of the application associated with the extension and pass as an
argument the full path of the app.

Thus, if we associate “%windir%\system32\notepad.exe” with “*.troll” a double click on
“troller.troll” leads to the following command line to be executed:
“"C:\Windows\system32\NOTEPAD.EXE" C:\Users\[USERNAME]\Desktop\troller.trl”.

108https://medium.com/@boutnaru/the-windows-process-journey-explorer-exe-windows-explorer-9a96bc79e183
107https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessasuserw
106https://medium.com/@boutnaru/the-windows-process-journey-svchost-exe-host-process-for-windows-services-b18c65f7073f

44

https://medium.com/@boutnaru/the-windows-process-journey-explorer-exe-windows-explorer-9a96bc79e183
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessasuserw
https://medium.com/@boutnaru/the-windows-process-journey-svchost-exe-host-process-for-windows-services-b18c65f7073f

mavinject.exe (Microsoft Application Virtualization
Injector)
“mavinject.exe” is the “Microsoft Application Virtualization Injector” which is part of App-V
(Microsoft Application Virtualization). App-V allows the delivering of applications to users as
“virtual applications”. This means that “virtual applications” are installed on a central managed
server. They are “streamed” to users as a service as they are needed. From the user’s perspective
it acts as an installed application locally109.

Overall, “mavinject.exe” is a PE binary located at “%windir%\System32\mavinject.exe”, which
is digitally signed by Microsoft. In case of a 64-bit system there is also a 32-bit version located at
“%windir%\SysWOW64\mavinject.exe”.

Moreover, using “mavinject.exe” we can perform DLL injection, meaning loading a DLL in the
address space of a different process. In order to do so we need to run “mavinject.exe” with
different arguments like: “mavinject.exe [PID] /INJECTRUNNING
[PATH_TO_DLL_TO_LOAD]” - as shown in the screenshot below.

Also, there are other arguments that can be used “/HMODULE” which allows import descriptor
injection. We can use it in the following manner: “mavinject.exe PID
/HMODULE=BASE_ADDRESS PATH_DLL ORDINAL_NUMBER”110.

Lastly, “mavinject.exe” uses the following Win32 API calls: VirtualProtectEx,
CreateRemoteThread, VirtualAllocEx, OpenProcess, LoadLibraryW and
WriteProcessMemory111.

111 https://posts.specterops.io/mavinject-exe-functionality-deconstructed-c29ab2cf5c0e
110 https://unprotect.it/technique/system-binary-proxy-execution-mavinject/
109 https://learn.microsoft.com/en-us/windows/application-management/app-v/appv-about-appv

45

https://posts.specterops.io/mavinject-exe-functionality-deconstructed-c29ab2cf5c0e
https://unprotect.it/technique/system-binary-proxy-execution-mavinject/
https://learn.microsoft.com/en-us/windows/application-management/app-v/appv-about-appv

where.exe (Lists location of Files)
“where.exe” (List Location of Files) is responsible for displaying the location of files which
match a specific search pattern. The search is done in the current directory and in the path which
are declared as part of the “PATH” environment variable112. It is equivalent to the “which”
command under Linux113.

Overall, “where.exe” is a PE binary file located at “%windir%\System32\where.exe”. On 64-bit
systems there is also a 32-bit version located at “%windir%\SysWOW64\where.exe”. Also, the
file is digitally signed by Microsoft.

Moreover, we can use “where.exe” to search in subdirectories from a specific location using the
“/r” switch. We can also perform the search remotely by specifying a UNC path114 - as shown in
the screenshot below.

114 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/where
113 https://linux.die.net/man/1/which
112 https://ss64.com/nt/where.html

46

https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/where
https://linux.die.net/man/1/which
https://ss64.com/nt/where.html

NisSrv.exe (Microsoft Network Realtime Inspection
Service)
“NisSrv.exe” is a PE binary which is the main executable that is started by the “WdNisSvc”
service aka “Microsoft Network Realtime Inspection”. It is executed by “services.exe” with the
permissions of the “NT AUTHORITY\LOCAL SERVICE” user (S-1-5-19). The description of
the service states it helps in guarding against intrusion attempts targeting known/newly
discovered vulnerabilities in network protocols.

Overall, “NisSrv.exe” monitors and inspects network traffic in real-time. By doing that it
searches for suspicious behavior that might suggest an exploit targeting the network protocol is
being executed115.

Moreover, “NisSrv.exe” is part of the “Windows Defender” platform, which is Microsoft’s
endpoint security platform. “Windows Defender” provides attack surface reduction and next
generation protection for both OS level and network based116.

Lastly, “NisSrv.exe'' is a PE binary file located at "%ProgramData%\Microsoft\Windows
Defender\Platform\[VERSION]\NisSrv.exe". It is also signed digitally by Microsoft the same
way as the main process of “Windows Defender” (MsMpEng.exe), with a signed level of
Antimalware (PsProtectedSignerAntimalware-Light) - as shown in the screenshot below.

116https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/microsoft-defender-endpoint?view=o
365-worldwide

115https://www.howtogeek.com/357184/what-is-microsoft-network-realtime-inspection-service-nissrv.exe-and-why-i
s-it-running-on-my-pc/

47

https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/microsoft-defender-endpoint?view=o365-worldwide
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/microsoft-defender-endpoint?view=o365-worldwide
https://www.howtogeek.com/357184/what-is-microsoft-network-realtime-inspection-service-nissrv.exe-and-why-is-it-running-on-my-pc/
https://www.howtogeek.com/357184/what-is-microsoft-network-realtime-inspection-service-nissrv.exe-and-why-is-it-running-on-my-pc/

Hostname.exe (Hostname APP)
“hostname.exe” is an executable located at “%windir%\System32\HOSTNAME.EXE”. On a
64-bit system there is also a 32-bit version located at
“%windir%\SysWOW64\HOSTNAME.EXE”. The executable is digitally signed by Microsoft.

Overall, “hostname.exe” is responsible for displaying the host name portion of the full computer
name. By the way, printing the environment variable %COMPUTERNAME% will output the
same result as “hostname.exe”117. By the way, “hostname.exe” uses the Win32 API in order to
retrieve the information, based on ReactOS118 the function is “GetComputerNameExW”119.

Moreover, for cases in which we have a cluster of compute nodes that have a distinct name we
can set the environment variable “_CLUSTER_NETWORK_NAME_” which will change the data
returned by Win32 API function120. Thus, the data returned by “hostname.exe” will also change
as shown in the screenshot below.

Lastly, for an implementation reference of “hostname.exe” I suggest going over the one in
ReacOS121.

121https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/cmdutils/h
ostname

120 https://jeffpar.github.io/kbarchive/kb/198/Q198893/
119 https://learn.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-getcomputernameexw

118https://github.com/reactos/reactos/blob/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/cmdutils/h
ostname/hostname.c#L36

117 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/hostname

48

https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/cmdutils/hostname
https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/cmdutils/hostname
https://jeffpar.github.io/kbarchive/kb/198/Q198893/
https://learn.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-getcomputernameexw
https://github.com/reactos/reactos/blob/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/cmdutils/hostname/hostname.c#L36
https://github.com/reactos/reactos/blob/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/cmdutils/hostname/hostname.c#L36
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/hostname

mmc.exe (Microsoft Management Console)
“mmc.exe” is the “Microsoft Management Console” which is responsible for
creating/saving/opening consoles (aka administrative tools). They are used in order to manage
software/hardware/network components as part of a given system which runs Windows. We can
also create our own custom console and distribute it. Those consoles can include different
snap-ins, which is a management tool hosted by “mmc.exe”122.

Moreover, snap-ins/custom console are distributed as part of “*.msc” file, which are as of today
are XML files that are parsed “mmc.exe” is order to load the specific snap-ins123. Even a clean
installation of Windows comes with a couple of builtin “*.msc” file like: “services.msc” (for
managing services), “WF.msc” (for managing the “Windows Defender Firewall'') and
“fsmgmt.msc” (for managing shared folders). You can find them (and more) in the following
location: “%windir%\system32\” (of course we can also save them to other locations).

At the end, a snap-in leads to a specific “*.dll” which is loaded by “mmc.exe” (“*.msc” can
include a reference for a couple of snap-ins). The relevant configuration is stored in the registry
under “HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MMC\SnapIns”124. The snap-ins
are identified using a “CLSID” (as other COM objects) - as seen in the screenshot below. Fun
fact about “*.msc” files contain data of the icon we want to be displayed when the file is shown
by “explorer.exe”125 or when “mmc.exe” is executed (as the app icon).

Also, one of the differences between MMC and other management consoles in Windows (like
“Control Panel”) is the fact we can also manage remote systems (we have to authenticate for
that) - as shown in the screenshot below (on the right side). Lastly, a reference implementation of
“mmc.exe” is included as part of ReactOS126.

126 https://github.com/reactos/reactos/tree/master/base/applications/mmc
125 https://medium.com/@boutnaru/the-windows-process-journey-explorer-exe-windows-explorer-9a96bc79e183
124 https://www.groovypost.com/tips/mmc-exe-windows-process-safe-virus/
123 http://file.fyicenter.com/143_Windows_.MSC_File_Extension_for_Microsoft_Management_Conso.html

122https://learn.microsoft.com/en-us/troubleshoot/windows-server/system-management-components/what-is-microso
ft-management-console

49

https://github.com/reactos/reactos/tree/master/base/applications/mmc
https://medium.com/@boutnaru/the-windows-process-journey-explorer-exe-windows-explorer-9a96bc79e183
https://www.groovypost.com/tips/mmc-exe-windows-process-safe-virus/
http://file.fyicenter.com/143_Windows_.MSC_File_Extension_for_Microsoft_Management_Conso.html
https://learn.microsoft.com/en-us/troubleshoot/windows-server/system-management-components/what-is-microsoft-management-console
https://learn.microsoft.com/en-us/troubleshoot/windows-server/system-management-components/what-is-microsoft-management-console

msg.exe (Message Utility)
“msg.exe” is the “Message Utility” which is a command line which allows sending a message to
a user. It is a PE binary located at “%windir%\System32\msg.exe” which is signed by Microsoft.
On a 64-bit system there is no 32-bit version of this file (in the SysWOW64 directory).

Overall, we can send a message by specifying a username (using * causes the message to arrive
to all users), a session id and even send a message to a remote machine, it is mainly used for
sending Terminal Services/Citrix shutdown messages. Also, we can define a delay for waiting
for the receiver to acknowledge the message. The executable is not included in ‘Home’ editions
of Windows127.

Moreover, historically this functionality was part of the “Messenger Service” until Windows
Vista/2008. It was also operated by using the “net send” command128. Lastly, the sending of the
message is done using RPC (“msg.exe” loads the RPC runtime DLL) and even MS-RPC over
SMB in case of sending the message to a remote129 . We can see an example of using “msg.exe”
in the screenshot shown below.

129https://sid-500.com/2017/10/07/active-directory-send-messages-to-all-currently-logged-on-users-msg-exe/comme
nt-page-1/

128 https://www.lifewire.com/net-send-2618095
127 https://ss64.com/nt/msg.html

50

https://sid-500.com/2017/10/07/active-directory-send-messages-to-all-currently-logged-on-users-msg-exe/comment-page-1/
https://sid-500.com/2017/10/07/active-directory-send-messages-to-all-currently-logged-on-users-msg-exe/comment-page-1/
https://www.lifewire.com/net-send-2618095
https://ss64.com/nt/msg.html

Magnify.exe (Microsoft Screen Magnifier)
“Magnify.exe” is the “Microsoft Screen Magnifier” which makes part of the screen bigger in
order to see images/text better. “Magnify.exe” has several options like: customizing the zoom
level, smoothing the edges of images/text, inverting colors, reading text and more130

Overall, “Magnify.exe” is a PE binary located at “%windir%\System32\Magnify.exe” which is
signed by Microsoft. Also, on a 64-bit system there is also a 32-bit version located at
“%windir%\SysWOW64\Magnify.exe”. Also, the file is signed by Microsoft.

Lastly, although there is no help displayed by “Magnify.exe” when running it from the command
line it still has a couple of switches that can be used. Examples are “/lens” (as shown in the
screenshot below) which defaults to lens view and “/docked” which defaults to “dock view”131.

131https://answers.microsoft.com/en-us/windows/forum/all/magnifyexe-zoom-in-from-cmd-command-prompt/48c72
57b-c1f8-483c-a0b8-fff24daf1622

130https://support.microsoft.com/en-us/windows/use-magnifier-to-make-things-on-the-screen-easier-to-see-414948ba
-8b1c-d3bd-8615-0e5e32204198

51

https://answers.microsoft.com/en-us/windows/forum/all/magnifyexe-zoom-in-from-cmd-command-prompt/48c7257b-c1f8-483c-a0b8-fff24daf1622
https://answers.microsoft.com/en-us/windows/forum/all/magnifyexe-zoom-in-from-cmd-command-prompt/48c7257b-c1f8-483c-a0b8-fff24daf1622
https://support.microsoft.com/en-us/windows/use-magnifier-to-make-things-on-the-screen-easier-to-see-414948ba-8b1c-d3bd-8615-0e5e32204198
https://support.microsoft.com/en-us/windows/use-magnifier-to-make-things-on-the-screen-easier-to-see-414948ba-8b1c-d3bd-8615-0e5e32204198

mstsc.exe (Remote Desktop Connection)
“mstsc.exe” is an executable located at “%windir%\System32\mstsc.exe”, it is also known as
“Remote Desktop Connection”. On a 64-bit system there is also a 32-bit version located at
“%windir%\SysWOW64\mstsc.exe”. It is a PE file which is signed by Microsoft.

Moreover, the name of the executable comes from “Microsoft Terminal Service Client”.
“Terminal Service” was the previous name for the protocol used for the remote connection.
Today it is called “Remote Desktop Protocol” (RDP). “mstsc.exe” is the default client for RDP
that is part of the Windows operating system132. I will write a dedicated writeup about the RDP
protocol itself.

Overall, “mstsc.exe” allows users to connect to a “Remote Session Host” server or remote
computer and to use the GUI interface of the remote system. Also, by using the executable we
can edit “*.rdp” file, which is a remote desktop connection configuration file133. Using
“mstsc.exe” a user can also share its printers/clipboard/audio devices/network drives with the
remote system to which the connection is being done. Lastly, for an implementation reference of
“mstsc.exe” I suggest going over the one in ReacOS134.

134 https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/mstsc
133 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/mstsc
132 https://en.wikipedia.org/wiki/Remote_Desktop_Protocol

52

https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/applications/mstsc
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/mstsc
https://en.wikipedia.org/wiki/Remote_Desktop_Protocol

curl.exe (cURL executable)
“curl.exe” is a command line tool which allows transferring data with URLs. It supports various
protocols like: FTP/S, HTTP/S, IMAP/S, LDAP/S, MQTT, POP3, SMB/S135. “curl” is a popular
command line tool for Linux136. There is also a version of “curl” for Windows. it is statically
linked with different libraries like: libssh2, brotli, zlib, zstd, nghttp3, nghttp2, cacert137.

Moreover, since build 17063 of Windows 10 (December 2017), Microsoft has announced that
“curl” is going to be shipped by default as part of Windows138. However, “curl.exe” that is
shipped with Windows is handled and built by Microsoft. Microsoft’s version of “curl” uses the
SChannel TLS backend139.

Lastly, there is also a “curl” command as part of Powershell, but it is just an alias to the
“Invoke-WebRequest”cmdlet - as shown in the screenshot below. We can go over the source
code of curl in GitHub140. Using “curl.exe” we can send HTTP GET requests (as shown below),
resuming downloads, specifying max transfer rate and more141.

141 https://www.keycdn.com/support/popular-curl-examples
140 https://github.com/curl/curl
139 https://curl.se/windows/microsoft.html
138 https://learn.microsoft.com/en-us/virtualization/community/team-blog/2017/20171219-tar-and-curl-come-to-windows
137 https://curl.se/windows/
136 https://linux.die.net/man/1/curl
135 https://curl.se/

53

https://www.keycdn.com/support/popular-curl-examples
https://github.com/curl/curl
https://curl.se/windows/microsoft.html
https://learn.microsoft.com/en-us/virtualization/community/team-blog/2017/20171219-tar-and-curl-come-to-windows
https://curl.se/windows/
https://linux.die.net/man/1/curl
https://curl.se/

winver.exe (Version Reporter Applet)
“winver” is the “Version Reporter Applet” which is responsible for displaying information about
the version of the running operating system. It is also referred to as the “Windows Version”
utility142. It is a PE binary file located at “%windir%\System32\winver.exe”, on 64-bit systems
there is also a 32-bit version located at “%windir%\SysWOW64\winver.exe”.

Also, “winver.exe” is signed by Microsoft. It was first include in Windows from “Windows 3.0”,
since “Windows 3.5” it calls the “ShellAbout” function from “shell32.dll”143. Thus, if we have a
version of Windows that does not include “winver.exe”(like Windows PE) we can use
“rundll32.exe”144 to call it with the following command “rundll32 shell32,ShellAbout”.

Moreover, due to the UI changes that have been made in Windows along the way in Windows
caused also for changes in “winver.exe” as shown in the screenshots below145. The examples are
from the following versions of Windows (from left to right): “Windows 3.10”, “Window XP”,
“Windows 2003 Server”, “Windows 7” and “Windows 10”. Lastly, we can checkout the
implementation of “winver.exe” as part of ReacOS146.

146 https://github.com/reactos/reactos/tree/master/base/applications/winver
145 https://betawiki.net/wiki/Winver
144 https://medium.com/@boutnaru/the-windows-process-journey-rundll32-exe-windows-host-process-415132f1363
143 https://learn.microsoft.com/en-us/windows/win32/api/shellapi/nf-shellapi-shellaboutw
142 https://betawiki.net/wiki/Winver

54

https://github.com/reactos/reactos/tree/master/base/applications/winver
https://betawiki.net/wiki/Winver
https://medium.com/@boutnaru/the-windows-process-journey-rundll32-exe-windows-host-process-415132f1363
https://learn.microsoft.com/en-us/windows/win32/api/shellapi/nf-shellapi-shellaboutw
https://betawiki.net/wiki/Winver

arp.exe (TCP/IP Arp Command)
“arp.exe” (TCP/IP Arp Command) is a PE binary located at “%windir%\System32\ARP.EXE”.
On 64-bit systems there is also a 32-bit version located at “%windir%\SysWOW64\ARP.EXE”.
Also, the binary file is digitally signed by Microsoft.

Overall, “arp.exe” allows displaying (using the “-a” or “/a” switch - as shown in the screenshot
below) and modifying (using the “-s” or “/s” switch) entries in the ARP (Address Resolution
Protocol) cache. There is a separate table for each network adapter that the system has (which is
connected and has IP information). It is relevant for Ethernet/Token Ring network adapters147.

Basically, ARP is a network protocol used for retrieving the link layer address (like MAC) for a
given internet layer address (like IPv4). By the way, in IPv6 the functionality of ARP is
implemented by NDP (Neighbor Discovery Protocol). Lastly, ARP is a request/response protocol
which is encapsulated by the link layer protocol. Also, it is never routed across inter-networking
entities148.

148 https://en.wikipedia.org/wiki/Address_Resolution_Protocol
147 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/arp

55

https://en.wikipedia.org/wiki/Address_Resolution_Protocol
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/arp

WFS.exe (Microsoft Windows Fax and Scan)
“WFS.exe” (aka the “Microsoft Windows Fax and Scan”) which is an integrated scanning and
faxing app as part of Windows. It is the replacement of the “Fax Console” that was part of
Windows XP. Overall, “WFS.exe” provides the ability to send/receive faxes, emailing/faxing
scanned documents and forwarding faxes as email attachments149.

Also, It is a PE binary file located at “%windir%\System32\WFS.exe” which is digitally signed
by Microsoft. By the way, on a 64-bit system there is only the 64-bit version, there is not a 32-bit
version (in “%windir%\SysWOW64”) like we have with other executables such as “cmd.exe”.

Moreover, in order for “WFS.exe” to operate correctly we need to install it as an “Optional
Feature”150. It is also dependent on the Fax service, which executable is located at
“%windir%\System32\FXSSVC.exe”151.

151https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc725953(v=ws.11)?re
directedfrom=MSDN

150 https://www.intowindows.com/how-to-install-windows-fax-and-scan-in-windows-11/
149 https://en.wikipedia.org/wiki/Windows_Fax_and_Scan

56

https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc725953(v=ws.11)?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc725953(v=ws.11)?redirectedfrom=MSDN
https://www.intowindows.com/how-to-install-windows-fax-and-scan-in-windows-11/
https://en.wikipedia.org/wiki/Windows_Fax_and_Scan

clip.exe (Copies the Data into Clipboard)
“clip.exe” (copies the data into clipboard) is a PE binary located at
“%windir%\System32\clip.exe”. On 64-bit systems there is also a 32-bit version located at
“%windir%\SysWOW64\clip.exe”. Also, the binary file is a CLI tool which is digitally signed by
Microsoft.

Overall, “clip.exe” is used in order to copy the results of commands into the Windows clipboard.
We can use it in one of the following ways: “command | clip” or “clip < file.txt”152. After using
“clip.exe” the text output can be pasted into another program.

Thus, we can see an example of usage in the screenshot below. In the screenshot we use
“clip.exe” to store an echoed string into the clipboard. Using “osk.exe”
(https://medium.com/@boutnaru/the-windows-process-journey-osk-exe-accessibility-on-screen-
keyboard-72823695321e) aka the “On Screen Keyboard” we send “Ctrl+V” to paste the stored
text into Notepad. Lastly, In powershell we have a cmdlet (“Set-Clipboard”) which does the
same as “clip.exe” (https://ss64.com/ps/set-clipboard.html).

152 https://ss64.com/nt/clip.html

57

https://medium.com/@boutnaru/the-windows-process-journey-osk-exe-accessibility-on-screen-keyboard-72823695321e
https://medium.com/@boutnaru/the-windows-process-journey-osk-exe-accessibility-on-screen-keyboard-72823695321e
https://ss64.com/ps/set-clipboard.html
https://ss64.com/nt/clip.html

consent.exe (Consent UI for Administrative
Applications)
“consent.exe” is the “Consent UI for Administrative Applications” which is called as part of a
UAC (User Account Control) flow153. It is a PE binary file located at
“%windir%\system32\consent.exe”, which is signed digitally by Microsoft. On a 64-bit system
there is no 32-bit version, as we have with other binaries such as “cmd.exe”.

Moreover, as shown in the screenshot below, “consent.exe” is started by the service “Application
Information” which is hosted by “svchost.exe”154. The description of the service states that it
“Facilitates the running of interactive applications with additional administrative privileges. If
this service is stopped, users will be unable to launch applications with the additional
administrative privileges they may require to perform desired user tasks”.

Also, as shown in the screenshot below, although it is running within “session 0” we can see that
“consent.exe” is assigned to “session 2” with the permissions of “NT AUTHORITY\SYSTEM”.
For further security the consent prompt is displayed on the secure desktop, only Windows
processes can access the secure desktop155.

Lastly, if the logged on user is not an administrative account a credentials prompt will be
displayed for getting a username and password for an administrative account - it is also done by
“consent.exe” in a secure desktop156. We can turn off prompting in secure mode with “reg.exe”:
‘REG ADD “HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System" /V
"PromptOnSecureDesktop" /T "REG_DWORD" /D "0x00000000" /F’157.

157 https://stackoverflow.com/questions/4046940/how-to-screen-shot-a-uac-prompt
156 https://securityinternals.blogspot.com/2014/02/the-user-access-control-uac-prompts.html
155 https://learn.microsoft.com/en-us/windows/security/application-security/application-control/user-account-control/how-it-works
154 https://medium.com/@boutnaru/the-windows-process-journey-svchost-exe-host-process-for-windows-services-b18c65f7073f
153 https://www.file.net/process/consent.exe.html

58

https://stackoverflow.com/questions/4046940/how-to-screen-shot-a-uac-prompt
https://securityinternals.blogspot.com/2014/02/the-user-access-control-uac-prompts.html
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/user-account-control/how-it-works
https://medium.com/@boutnaru/the-windows-process-journey-svchost-exe-host-process-for-windows-services-b18c65f7073f
https://www.file.net/process/consent.exe.html

getmac.exe (Displays NIC MAC information)
“getmac.exe” is a binary PE file located at “%windir%\System32\getmac.exe”, on 64-bit systems
there is also a 32-bit version located at “%windir%\SysWOW64\getmac.exe”. This is a CLI
application which is digitally signed by Microsoft.

Overall, “getmac.exe” is used for retrieving the MAC (Media Access Control) address for all the
NIC (Network Interface Cards) on the system (both physical and virtual)158. By the way, this is
not the only CLI tool we can use to show the MAC address of NICs - we can also use
“ipconfig.exe” (on which there is going to be a separate writeup) and even “nbtstat.exe” to show
the MAC address of a remote machine (on this there is also going to be a separate writeup).
Lastly, an example output of the command is shown below.

158 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/getmac

59

https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/getmac

defrag.exe (Disk Defragmenter Module)
“defrag.exe” (Disk Defragmenter Module) is used to improve system performance by
consolidating fragmented files on local volumes159.

Overall, defragmentation organizes storage by consolidating files/other data saved on the hard
drive. Due to different reasons when files are stored they can be broken down into smaller pieces
(aka fragments) that can be spread across the hard drive. The goal of the defragmentation is to
take scattered data in a hard drive and organize it for more efficient retrieval - as shown in the
diagram below160. The above part is before the process and the lower one is after it.

Moreover, we can’t defragment every file system which exists. There is only support for NTFS,
ReFS and FAT/FAT32 file system volumes. Thus, CD-ROMs/Network drives/volumes locked by
the filesystem are not supported. Also, if the file system is marked as dirty, which might indicate
possible corruption - it can be verified using the command “fsutil dirty”161.

161 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/defrag
160 https://www.avast.com/c-how-to-defrag-pc-hard-drive
159 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/defrag

60

https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/defrag
https://www.avast.com/c-how-to-defrag-pc-hard-drive
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/defrag

msedge.exe (Microsoft Edge)
“msedge.exe” is a 64-bit binary which is signed by Microsoft. Although it is a 64-bit binary it is
still located by default in the program files directory of 32-bit applications ("C:\Program Files
(x86)\Microsoft\Edge\Application\msedge.exe"). Microsoft Edge (aka Edge) is a web browser
that is based on chromium which was released on January 15, 2020. It is supported on Windows,
macOS, iOS and Android162. By the way, if you want you can also be part of the “Microsoft Edge
Insider Channel”. This allows you to be from the first who previews what’s new in Edge163.

Moreover, from Windows 10 Enterprise/Pro (versions 1803 and later) or Windows 11 Pro users
can use the “Application Guard” mode of Edge - as shown in the screenshot below. It disables
printing from the application guard window, does not allow copying/pasting between the host PC
and the application guard window and does not permit data persistence between application
guard windows164.

Lastly, In order to enable that we need to enable the “"Windows Defender Application Guard"
feature (it requires the CPU support for virtualization). It launches Edge in an Hyper-V
virtualized isolated environment165. A temporary container is created each time, it is
destroyed/deleted when the user closes all the related windows166.

166 https://blogs.windows.com/msedgedev/2016/09/27/application-guard-microsoft-edge/

165ttps://techcommunity.microsoft.com/t5/windows-insider-program/windows-defender-application-guard-standalone-mode/m-p/
66903

164https://learn.microsoft.com/en-us/windows/security/application-security/application-isolation/microsoft-defender-application-g
uard/test-scenarios-md-app-guard

163 https://www.microsoft.com/en-us/edge/download/insider

162https://support.microsoft.com/en-us/microsoft-edge/download-the-new-microsoft-edge-based-on-chromium-0f4a3dd7-55df-60f
5-739f-00010dba52cf

61

https://blogs.windows.com/msedgedev/2016/09/27/application-guard-microsoft-edge/
https://techcommunity.microsoft.com/t5/windows-insider-program/windows-defender-application-guard-standalone-mode/m-p/66903
https://techcommunity.microsoft.com/t5/windows-insider-program/windows-defender-application-guard-standalone-mode/m-p/66903
https://learn.microsoft.com/en-us/windows/security/application-security/application-isolation/microsoft-defender-application-guard/test-scenarios-md-app-guard
https://learn.microsoft.com/en-us/windows/security/application-security/application-isolation/microsoft-defender-application-guard/test-scenarios-md-app-guard
https://www.microsoft.com/en-us/edge/download/insider
https://support.microsoft.com/en-us/microsoft-edge/download-the-new-microsoft-edge-based-on-chromium-0f4a3dd7-55df-60f5-739f-00010dba52cf
https://support.microsoft.com/en-us/microsoft-edge/download-the-new-microsoft-edge-based-on-chromium-0f4a3dd7-55df-60f5-739f-00010dba52cf

tzutil.exe (Windows Time Zone Utility)
“tzutil.exe” is a binary PE file located at “%windir%\system32\tzutil.exe”. It is used in order to
display/set the time zone of the current system167. On 64-bit systems there is also a 32-bit version
of “tzutil.exe” located at “%windir%\SysWOW64\tzutil.exe”.

Moreover, “tzutil.exe” is a CLI tool which is digitally signed by Microsoft. For displaying the
current time zone ID we use the “/g” switch while for setting the time zone we use the “/s”
switch168. There are different time zones that can be set using this command169, we can also list
them using the “/l” switch.

Lastly, there are cmdlets which are equal to “tzutil.exe” which is called
Get-TimeZone/Set-TimeZone - as shown in the screenshot below.

169 https://ss64.com/nt/timezones.html
168 https://ss64.com/nt/tzutil.html
167 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/tzutil

62

https://ss64.com/nt/timezones.html
https://ss64.com/nt/tzutil.html
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/tzutil

expand.exe (LZ Expansion Utility)
“expand.exe” aka “LZ Expansion Utility” is a PE binary located at
“%windir%\System32\expand.exe”. It is used for expanding one or more compressed files. For
example we can use it to retrieve compressed files from distribution disks170. On 64-bit systems
there is also a 32-bit version of “expand.exe” located at “%windir%\SysWOW64\expand.exe”.

Moreover, it is used to uncompress “*.cab” files (cabinet files). “expand.exe” is also called “The
Microsoft File Expansion Utility” and it dates back to MS-DOS 5 in 1990171. The simplest way
to use it could be the following: “expand -d [FILE_NAME].cab” - as shown in the screenshot
below.

Lastly, versions of expand before version 6.0 (Windows 7 timeline) included buggy
implementation of “*.cab” file which include subfolders172.

#Windows #Microsoft #cab #compression #cabinet #Learning #DevOps #DevSecOps
#TheWindowsProcessJourney

172 https://ss64.org/viewtopic.php?t=71
171 https://ss64.com/nt/expand.html
170 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/expand

63

https://ss64.org/viewtopic.php?t=71
https://ss64.com/nt/expand.html
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/expand

WSReset.exe (Windows Store Reset)
In general, “WSReset.exe” is a PE binary file located at “%windir%\System32\WSReset.exe”
which is also digitally signed by Microsoft. The description (Part of the PE format) states “This
tool resets the Windows Store without changing account settings or deleting installed apps”. By
the way, there is no 32-bit version of “WSRest.exe” on 64-bit systems (like we have with
“cmd.exe” for example).

Thus, we can say “WSReset.exe” is used for clearing the cache of the “Windows Store”173. The
“Windows Store” creates temporary/cookies files in the following directories:
“%UserProfile%\AppData\Local\Packages\Microsoft.WindowsStore_8wekyb3d8bbwe\AC\INet
Cache” and
“%UserProfile%\AppData\Local\Packages\Microsoft.WindowsStore_8wekyb3d8bbwe\AC\INet
Cookies”. So in order to clear the cache the executable just needs to delete the files from those
folders174 - as also shown in the screenshot below.

Lastly, “WSReset.exe” is also auto elevated and during its startup it checks the following registry
value
“HKCU\Software\Classes\AppX82a6gwre4fdg3bt635tn5ctqjf8msdd2\Shell\open\command” for
commands to execute175 - as shown in the screenshot below. This executable is a console tool,
due to that “conhost.exe”176 is also needed as we can see in the screenshot below.

176 https://medium.com/@boutnaru/the-windows-process-journey-conhost-exe-console-window-host-f03f8db35574
175 https://lolbas-project.github.io/lolbas/Binaries/Wsreset/
174 https://daniels-it-blog.blogspot.com/2020/07/arbitrary-file-delete-via-wsresetexe.html
173 https://helpdeskgeek.com/how-to/how-to-clear-windows-store-cache-with-wsreset-exe/

64

https://medium.com/@boutnaru/the-windows-process-journey-conhost-exe-console-window-host-f03f8db35574
https://lolbas-project.github.io/lolbas/Binaries/Wsreset/
https://daniels-it-blog.blogspot.com/2020/07/arbitrary-file-delete-via-wsresetexe.html
https://helpdeskgeek.com/how-to/how-to-clear-windows-store-cache-with-wsreset-exe/

SlideToShutDown.exe (Windows Slide To Shutdown)
“SlideToShutDown.exe” is a PE binary located at
“%windir%\System32\SlideToShutDown.exe”. It can be used in a smart and interactive way for
shutting down Windows. Instead of the traditional way, we can just shutdown the system by
sliding/dragging the window down - as shown in the screenshot below177.

Moreover, on 64-bit systems we don’t have a 32-bit version of “SlideToShutdown.exe” (as we
have with “cmd.exe” for example). The binary is digitally signed by Microsoft. By default, the
“slide to shutdown” should only show if we hold down the power button on a system with a
touch screen178. Lastly, even if we don’t have a touch screen we can use the mouse for
sliding/dragging the window down.

178 https://answers.microsoft.com/en-us/windows/forum/all/slide-to-shut-down/7b7e3f86-ccea-41a4-be8b-74531ea2fcb8

177 https://www.geeksforgeeks.org/creating-slide-to-shut-down-shortcut-in-windows-10/

65

https://answers.microsoft.com/en-us/windows/forum/all/slide-to-shut-down/7b7e3f86-ccea-41a4-be8b-74531ea2fcb8
https://www.geeksforgeeks.org/creating-slide-to-shut-down-shortcut-in-windows-10/

takeown.exe (Takes Ownership of a File)
“takeown.exe” (Takes ownership of a file) is a PE binary located at
“%windir%\System32\takeown.exe”. It is a CLI tool which allows an administrator to recover
access to a file that was denied, it is done by changing the file-ownership179. On 64-bit systems
there is also a 32-bit version of “takeown.exe” located at “%windir%\SysWOW64\takeown.exe”.

Thus, after the ownership of the file/folder is taken the logged-on user is provided with the “full
control” permissions. This allows the user to change the DACL180 of the file/folder181.

Lastly, by default the owner of a securable object182 is based on the entity described by the access
token183 of the process/thread that has created it. It can be changed by the current owner or by a
security context which holds the take ownership (SeTakeOwnershipPrivilege) privilege184.

184 https://medium.com/@boutnaru/windows-security-privileges-b8fe18cf3d5a
183 https://medium.com/@boutnaru/windows-security-access-token-81cd00000c64
182 https://medium.com/@boutnaru/windows-securable-objects-311a9d6c83ad
181 https://appuals.com/takeown/
180 https://medium.com/@boutnaru/the-windows-security-journey-dacl-discretionary-access-control-list-c74545e472ec
179 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/takeow

66

https://medium.com/@boutnaru/windows-security-privileges-b8fe18cf3d5a
https://medium.com/@boutnaru/windows-security-access-token-81cd00000c64
https://medium.com/@boutnaru/windows-securable-objects-311a9d6c83ad
https://appuals.com/takeown/
https://medium.com/@boutnaru/the-windows-security-journey-dacl-discretionary-access-control-list-c74545e472ec
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/takeown

dialer.exe (Microsoft Windows Phone Dialer)
“dialer.exe” (Microsoft Windows Phone Dialer) is a PE binary located at
“%windir%\System32\dialer.exe”, which can be used to dial outgoing voice calls using the
computer. It is done if the system has a modem supporting both voice and data185 .On 64-bit
systems there is also a 32-bit located at %windir%\SysWOW64\dialer.exe.

Thus, “dialer.exe” supports TAPI (Telephony Program Interface) based ActiveVoice186. TAPI is
an API (Application Programming Interface) allowing Windows systems to use the telephony
services187.

Moreover, TPAPI is a COM188 based API that merges classic and IP telephony. It allows voice
mailing, PBX control, basic voice over PSTN (Public Switched Telephone Network), call center
applications, IVR (Interactive Voice Response), multicast multimedia and video conferencing189.
Lastly, we can think about “dialer.exe” as a software based phone - as also shown in the
screenshot below.

189 https://learn.microsoft.com/en-us/windows/win32/tapi/tapi-3-1-start-page
188 https://medium.com/@boutnaru/windows-com-component-object-model-71a76a97435c

187 https://documentation.avaya.com/en-US/bundle/IPOfficeSolutionDescription/page/Telephony_Application_Program_Interface.html

186 https://answers.microsoft.com/en-us/windows/forum/all/dialerexe/b859ea03-f8f5-4b45-ab3a-19ff032763ff
185 https://answers.microsoft.com/en-us/windows/forum/all/how-do-you-set-up-dialer/2aa4ef09-5a6d-4aa1-901b-557ff9ce0ef6

67

https://learn.microsoft.com/en-us/windows/win32/tapi/tapi-3-1-start-page
https://medium.com/@boutnaru/windows-com-component-object-model-71a76a97435c
https://documentation.avaya.com/en-US/bundle/IPOfficeSolutionDescription/page/Telephony_Application_Program_Interface.html
https://answers.microsoft.com/en-us/windows/forum/all/dialerexe/b859ea03-f8f5-4b45-ab3a-19ff032763ff
https://answers.microsoft.com/en-us/windows/forum/all/how-do-you-set-up-dialer/2aa4ef09-5a6d-4aa1-901b-557ff9ce0ef6

bthudtask.exe (Bluetooth Uninstall Device Task)
“bthudtask.exe” is a PE binary located at “%windir%\System32\bthudtask”, which is the
Bluetooth uninstall device task. It is used to remove the pairing with a remote Bluetooth device,
which is specified by service ID190.

Moreover, on 64-bit systems there is also a 32-bit version of the executable located at
“%windir%\SysWOW64\bthudtask.exe%”. Also, the executable is digitally signed by Microsoft
and “auto elevated”.

Thus, the “Task Scheduler” task191 that runs “bthudtask.exe” is “UninstallDeviceTask” which is
located in the following hierarchy “Microsoft->Windows->Bluetooth” - as shown in the
screenshot below. The scheduled task exits after the device is uninstalled192.

Lastly, from the “Actions” tab we can see that the program is started “BthUdTask.exe $(Arg0)”.
This means that the Bluetooth service ID is given as the first argument.

192https://support.microsoft.com/en-gb/topic/description-of-the-scheduled-tasks-in-windows-vista-21f93b44-7260-a612-5ec3-fb2
a7be5563c

191 https://medium.com/@boutnaru/windows-scheduler-tasks-84d14fe733c0
190 https://www.shouldiblockit.com/bthudtask.exe-91.aspx

68

https://support.microsoft.com/en-gb/topic/description-of-the-scheduled-tasks-in-windows-vista-21f93b44-7260-a612-5ec3-fb2a7be5563c
https://support.microsoft.com/en-gb/topic/description-of-the-scheduled-tasks-in-windows-vista-21f93b44-7260-a612-5ec3-fb2a7be5563c
https://medium.com/@boutnaru/windows-scheduler-tasks-84d14fe733c0
https://www.shouldiblockit.com/bthudtask.exe-91.aspx

DisplaySwitch.exe (Windows Display Switch)
“DisplaySwitch.exe” is a PE binary located at “%windir%\System32\DisplaySwitch.exe”, it is
used for switching the display based on different options like: PC only, duplicate (mirror), extend
and second screen only - as shown in the screenshot below193. Moreover, “DisplaySwitch.exe” is
signed digitally by Microsoft. On a 64-bit system there is no 32-bit version of
“DisplaySwitch.exe” (like we have for example with “cmd.exe”).

Lastly, on Windows 10 we can pass the following command line arguments:/internal ,/clone,
/extend and /external instead of selecting the option in the GUI. On Windows 11 the switches
have been replaced with numbers: 1 (=/internal), 2 (=/clone), 3 (=/extend) and 4 (=/external).
Keep in mind not to add a space after the number is given as input argument194.

194 https://learn.microsoft.com/en-us/answers/questions/1036148/displayswitch-exe-behavior-on-windows-11-22h2
193 https://learn.microsoft.com/en-us/answers/questions/1036148/displayswitch-exe-behavior-on-windows-11-22h2

69

https://learn.microsoft.com/en-us/answers/questions/1036148/displayswitch-exe-behavior-on-windows-11-22h2
https://learn.microsoft.com/en-us/answers/questions/1036148/displayswitch-exe-behavior-on-windows-11-22h2

SpaceAgent.exe (Storage Spaces Settings)
“SpaceAgent.exe” is a PE binary located at “%windir%\System32\SpaceAgent.exe”. The
description field in the PE format states it is “Storage Spaces Settings”. On 64-bit systems there
is no 32-bit version of the binary - as we have with other binaries like “cmd.exe”195. It is good to
know that the binary itself is also digitally signed by Microsoft.

Overall, “Storage Spaces” allows users to protect data from drive failures. It is a technology
similar to RAID (Redundant Array of Independent Disks), which is implemented in software.
“Storage Spaces” gives us the ability to combine three or more drives into a single pool of
storage. This pool can then be used to create new storage spaces, which typically store multiple
copies of your data for redundancy. So, if a drive fails, our data will still be safe196.

Moreover, “SpaceAgent.exe” is configured to run as a scheduled task using the “Windows
Scheduler”197. We can see that configuration using the “Computer Management” console
(“compmgmt.msc”) - as shown in the screenshot below. The task name is “SpaceAgentTask” and
when executed it runs with the permissions of the “Local System” user - also shown in the
screenshot. The location of the task configuration is in
“%windir%\System32\Tasks\Microsoft\Windows\SpacePort\SpaceAgentTask”.

Lastly, from the manifest’s information as part of the “SpaceAgent.exe” binary, there is a
description field which states: “Management agent for the Storage Spaces control panel applet”.
Thus, if we click the “Storage Spaces” icon as part of the control panel and after that we click on
“"create new pool and storage spaces" an instance of “SpaceAgent.exe” is created.

197 https://medium.com/@boutnaru/windows-scheduler-tasks-84d14fe733c0
196 https://learn.microsoft.com/en-us/windows-server/storage/storage-spaces/overview
195 https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b

70

https://medium.com/@boutnaru/windows-scheduler-tasks-84d14fe733c0
https://learn.microsoft.com/en-us/windows-server/storage/storage-spaces/overview
https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b

tar.exe (BSD tar Archive Tool)
“tar.exe” is a PE binary located at “%windir%\System32\tar.exe”. It is a command line tool
which enables us to create archives and extract files198. “tar.exe” is based on the “libarchive”199,
you can check out the code on GitHub200. This is referenced by “tar.exe” by using
“%windir%\System32\archiveint.dll”.

Moreover, “tar.exe” was added to Windows 10 (1803) from build 17063 or later as a pre-installed
binary201. There is also a 32-bit version of the binary located at “%windir%\SysWOW64\tar.exe”.
Microsoft also digitally signs the “tar.exe” binary.

Overall, by going over the command line options of “tar.exe” we can see that we can perform
different operations: create archives, list files inside archives, update archives and extract them.
Also, we can compress an archive using gzip/bzip2/xz/lzma and use other formats
ustar/pax/cpio/shar202.

Lastly, when extracting an archive using “tar.exe” we can keep/overwrite existing files, restore
(or not) modification times, write data to stdout (and not disk) and restore ACLs203 and other
permission information (ownership and flags).

203 https://medium.com/@boutnaru/the-windows-security-journey-acl-access-control-list-b7d9a6fe428
202 https://ss64.com/nt/tar.html
201 https://renenyffenegger.ch/notes/Windows/dirs/Windows/System32/tar_exe
200 https://github.com/libarchive/libarchive
199 https://libarchive.org/
198 https://learn.microsoft.com/en-us/virtualization/community/team-blog/2017/20171219-tar-and-curl-come-to-windows

71

https://medium.com/@boutnaru/the-windows-security-journey-acl-access-control-list-b7d9a6fe4282
https://ss64.com/nt/tar.html
https://renenyffenegger.ch/notes/Windows/dirs/Windows/System32/tar_exe
https://github.com/libarchive/libarchive
https://libarchive.org/
https://learn.microsoft.com/en-us/virtualization/community/team-blog/2017/20171219-tar-and-curl-come-to-windows

timeout.exe (Pauses Command Processing)
“timeout.exe” is a PE binary located at “%windir%\System32\timeout.exe”. It is a command line
tool which enables pausing command processing. By using it we can delay execution for
seconds/minutes as part of a batch file204. By the way, we don’t have “sleep.exe” pre-installed on
Windows, it is part of the “Windows Resource Kit”205.

Moreover, on 64-bit systems of Windows we also have a 32-bit version of “timeout.exe” located
at “%windir%\System32\timeout.exe”. It is also digitally signed by Microsoft. We can specify
using a decimal number the amount of seconds we want to wait. The range is between (-1) to
99999. Using (-1) states to wait indefinitely for a key storkey. There is also an option of ignoring
keystores using “/nobreak”, which can be canceled using “Ctrl+C”206. Lastly, we can see a
couple of examples for using “timeout.exe” in the screenshot below.

206 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/timeout
205 https://ss64.com/nt/sleep.html
204 https://ss64.com/nt/timeout.html

72

https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/timeout
https://ss64.com/nt/sleep.html
https://ss64.com/nt/timeout.html

doskey.exe (Keyboard History Utility)
“doskey.exe” (Keyboard History Utility) is a binary PE file located at
“%windir%\system32\doskey.exe”. It is a CLI (command line interface) utility which is used for
recalling previously entered commands. Also, we can use it for editing commands and creating
macros207.

Moreover, after running “doskey.exe” we can use F7 in order to see the buffer/log/history of
commands entered in a menu - as shown in the screenshot below. There are multiple
keys/combinations that “doskey.exe” recognizes like “ALT+F7” which clears the history buffer
and “End” which moves to the end of the line208. Lastly, we can go over a reference
implementation of “doskey.exe” from ReactOS209.

209 https://github.com/reactos/reactos/tree/master/base/applications/cmdutils/doskey
208 https://kb.iu.edu/d/aers
207 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/doskey

73

https://github.com/reactos/reactos/tree/master/base/applications/cmdutils/doskey
https://kb.iu.edu/d/aers
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/doskey

fsquirt.exe (Bluetooth File Transfer)
“fsquirt.exe” is a PE binary located at “%windir%\System32\fsquirt.exe” which is used for
sending/receiving files using Bluetooth. On 64-bit systems there is a 32-bit version located at
“%windir%\SysWOW64\fsquirt.exe”. By the way, the binary is also digitally signed by
Microsoft.

Thus, “fsquirt.exe” is the default Bluetooth file transfer wizard on Windows systems210. The file
transfer can be done between two computer that support Bluetooth, mobile phones or any other
Bluetooth enabled devices211.

Lastly, “fsquirt.exe” is also configured in the registry in the following registry location:
“HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\App Paths”.
The “App Paths” subkey is checked when the ShellExecuteExW212 API function is called (The
same goes for ShellExecuteExA). By registering an application using that subkey we can avoid
the need for modifying the PATH environment variable213.

213 https://learn.microsoft.com/en-us/windows/win32/shell/app-registration
212 https://learn.microsoft.com/en-us/windows/win32/api/shellapi/nf-shellapi-shellexecuteexW
211 https://learn.microsoft.com/en-us/windows-hardware/drivers/bluetooth/bluetooth-user-interface
210 https://renenyffenegger.ch/notes/Windows/dirs/Windows/System32/fsquirt_exe

74

https://learn.microsoft.com/en-us/windows/win32/shell/app-registration
https://learn.microsoft.com/en-us/windows/win32/api/shellapi/nf-shellapi-shellexecuteexW
https://learn.microsoft.com/en-us/windows-hardware/drivers/bluetooth/bluetooth-user-interface
https://renenyffenegger.ch/notes/Windows/dirs/Windows/System32/fsquirt_exe

label.exe (Disk Label Utility)
“label.exe” (Disk Label Utility) is a binary PE file located at “%windir%\system32\label.exe”. It
is a CLI (command line interface) utility which is used for creating/changing/deleting the volume
label of a disk214.

Moreover, on an NTFS volume we can use a label with up to 32 characters. On 64-bit systems
there is also a 32-bit version on “label.exe” located at “%windir%\SysWOW64\label.exe”. Both
versions of the PE are signed digitally by Microsoft.

The volume label is displayed in different places like in the “File Explorer” or the output of the
“label.exe” - as marked in the screenshot below. In order to change the label there is a need for
admin privileges - as shown in the screenshot below. Lastly, we can also go over a reference
implementation of “label.exe” as part of ReactOS215.

215 https://github.com/reactos/reactos/tree/master/base/applications/cmdutils/label
214 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/label

75

https://github.com/reactos/reactos/tree/master/base/applications/cmdutils/label
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/label

forfiles.exe (Execute a Command on Selected Files)
“forfiles.exe” is a binary PE file located at “%windir%\system32\forfiles.exe”. It is a CLI
(command line interface) utility which can be used in order to execute a command on selected
files. On 64-bit versions of Windows there is also a 32-bit version of the binary located at
“%windir%\SysWOW64\forfiles.exe”. Also, the file is digitally signed by Microsoft.

Overall, “forfiles.exe” was included as part of Windows 98216 and Windows 2000217 resource
kits, that means it was not part of the standard OS installation. Since Windows Vista it is part of
the executables shipped with the OS218.

Moreover, “forfiles.exe” has multiple command line parameters including: “/S” (recursive
search), “/P” (specifying start directory), “/M” (search pattern mask), “/D” (selecting files by a
last modification time frame), “/?” (displaying help text) and “/C” (specifying what command to
run on each file). When using “/C” we can also use specific variables as part of the command
like “@file” (the file name we are operating on), “@path” (the full path), “@ext” (the file
extension) and more219.

Lastly, we can see an example of using “forfiles.exe” in the screenshot below. In the screenshot
we that for every file in the “C:\troller” directory with a “troller*” pattern in the file name we
execute the type builtin command of “cmd.exe”220.

#Windows #CLI #CommandLine #Learning #DevOps #DevSecOps #security #infosec
#cybersecurity #TheWindowsProcessJourney #forfiles

220 https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b
219 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/forfiles
218 https://web.archive.org/web/20061109021306/http://computerbits.wordpress.com/2006/07/21/new-command-line-tools-in-vista-beta-2/
217 https://www.activexperts.com/admin/reskit/reskit2000/forfiles/
216 https://web.archive.org/web/20200111203651/https://www.activexperts.com/admin/reskit/reskit98/forfiles/

76

https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/forfiles
https://web.archive.org/web/20061109021306/http://computerbits.wordpress.com/2006/07/21/new-command-line-tools-in-vista-beta-2/
https://www.activexperts.com/admin/reskit/reskit2000/forfiles/
https://web.archive.org/web/20200111203651/https://www.activexperts.com/admin/reskit/reskit98/forfiles/

eudcedit.exe (Private Character Editor)
“eudcedit.exe” is a PE binary located at “%windir%\System32\eudcedit.exe” it is known as the
“Private Character Editor”. In case we want to use our own character/symbol (like in a
document) we can use “eudcedit.exe”. Overall, it provides different tools for creating
symbols/characters including: pencil, brush, eraser, hollow/filled eclipse/rectangles, straight line
and rectangular/freeform selection221.

Overall, we can create a character/symbol in one of two ways. First, creating a new custom one
or second creating a custom one using a pre-existing character/symbol. By the way, on 64-bit
versions of Windows there is also a 32-bit version of the binary located at
“%windir%\SysWOW64\eudcedit.exe”. The binary itself is also digitally signed by Microsoft.

Lastly, “eudcedit.exe” is configured to be auto elevated by default (based on the manifest
information included in the binary itself “<autoElevate>true</autoElevate>”). In the screenshot
below we can see an example of using the editor and all the mentioned tools marked in the left
side of the UI.

221 https://www.thewindowsclub.com/charmap-and-eudcedit-windows-10

77

https://www.thewindowsclub.com/charmap-and-eudcedit-windows-10

wmplayer.exe (Windows Media Player)
“wmplayer.exe” is a PE binary located at “%ProgramFiles(x86)%\Windows Media
Player\wmplayer.exe”. It is used for lt as a media player, which is an application used for playing
multimedia files (video and audio). It can also be used as a media library application - as shown
in the screenshot below. By the way, WMP (Windows Media Player) has been included since
Windows 3.x222. However, since 2022 it is marked as legacy while there is a new UWP based
Media Player introduced in Windows 11223.

Moreover, we can find the new version in the Windows Store. This version is relevant for
Windows 10 (19042.0 or higher) on Mobile/PC/HoloLens/Xbox console/Surface Hub targeting
x86/x64/Arm64 architectures224.

Overall, the “wmplayer.exe” which is executed by default is the 32-bit version of WMP. There
could also be a 64-bit version in the following location: “%ProgramFiles%\Windows Media
Player\wmplayer.exe”. By the way, both versions are digitally signed by Microsoft.

224 https://apps.microsoft.com/detail/9WZDNCRFJ3PT
223 https://en.wikipedia.org/wiki/Windows_Media_Player
222 https://www.youtube.com/watch?v=imAUwsksUlY

78

https://apps.microsoft.com/detail/9WZDNCRFJ3PT?hl=en-US&gl=US
https://en.wikipedia.org/wiki/Windows_Media_Player
https://www.youtube.com/watch?v=imAUwsksUlY

dvdplay.exe (DVD Play Placeholder Application)
“dvdplay.exe” is a PE binary located at “%windir%\System32\dvdplay.exe”. It is used for
launching an application which is capable of playing DVD disks. On 64-bit versions of Windows
there is also a 32-bit version of the binary located at “%windir%\SysWOW64\dvdplay.exe”. The
binary is also digitally signed by Microsoft.

On old versions of Windows (like Windows ME), “dvdplay.exe” was its own application - as
shown in the screenshot below225. However, in new versions (like Windows 10) it is basically
launching “wmplayer.exe” which is the “Windows Media Player”226.

Thus, “dvdplayer.exe” calls the API function “RegGetValueW”227 in order to read the path of
“wmplayer.exe” from the application registration in the registry
“HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\App Paths\wmplayer.exe\Path”.
Later, it checks if the file exists using the API call “SearchPathW”228. If the file is found it is
started using the API call “CreateProcessW”229.

Lastly, the flow described above aligns with the description found in the PE header which states
it is a palace holder application. This flow is also shown in the screenshot below taken from
Sysinternals’ “Process Monitor” on Windows 10.

229 https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessw
228 https://learn.microsoft.com/en-us/windows/win32/api/processenv/nf-processenv-searchpathw
227 https://learn.microsoft.com/en-us/windows/win32/api/winreg/nf-winreg-reggetvaluew
226 https://medium.com/@boutnaru/the-windows-process-journey-wmplayer-exe-windows-media-player-7d25c370c526
225 www.activewin.com/tips/tips/microsoft/winme/b3.shtml

79

https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessw
https://learn.microsoft.com/en-us/windows/win32/api/processenv/nf-processenv-searchpathw
https://learn.microsoft.com/en-us/windows/win32/api/winreg/nf-winreg-reggetvaluew
https://medium.com/@boutnaru/the-windows-process-journey-wmplayer-exe-windows-media-player-7d25c370c526
http://www.activewin.com/tips/tips/microsoft/winme/b3.shtml

comp.exe (File Compare Utility)
“comp.exe” is a PE binary located at “%windir%\System32\comp.exe”. It is used for comparing
the content of two files/set of files byte-by-byte. The files compared may be located on the same
drive/directory or on different drive/directory. On 64-bit systems there is also a 32-bit version of
the binary located at “%windir%\SysWOW64\comp.exe”230.

Moreover, the files which are compared can also be in a remote location (SMB share). In case
there is a difference between the compared files the offsets of change with the different values
are displayed - as shown in the screenshot below. By the way, the “comp.exe” binary is also
digitally signed by Microsoft.

Lastly, by using command line arguments we can display the difference in decimal (hex is the
default), compare only a specific number of lines, display the difference in ascii characters and
more231. Also, there is a reference implementation of “comp.exe” as part of ReactOS232.

232 https://github.com/reactos/reactos/tree/master/base/applications/cmdutils/comp
231 https://ss64.com/nt/comp.html
230 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/comp

80

https://github.com/reactos/reactos/tree/master/base/applications/cmdutils/comp
https://ss64.com/nt/comp.html
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/comp

find.exe (Find String (grep) Utility)
“find.exe” is a PE binary located at “%windir%\System32\find.exe”. On 64-bit systems there is
also a 32-bit version of the binary located at “%windir%\SysWOW64\find.exe”. Both of the
versions are digitally signed by Microsoft. It is used in order to search for patterns of text files
and sends them to the standard input device. Thus, we can use it to filter/find a specific string
using wildcard characters233.

Overall, we can compare the functionality of “find.exe” to those of the “grep” utility234 which is
widely used under Unix/Linux systems. On the other hand it is completely different from the
“find”235 utility used in Unix/Linux systems which is similar to the “forfiles.exe”236 .

Moreover, “find.exe” has different command line switches for: displaying all lines not containing
a specific string (“/V”), counting the number of lines containing a string (“/C”), displaying line
numbers (“/N”) and ignoring the case of characters while searching (“/I”). Also, we can skip (or
not) files that have the offline attribute set237.

Lastly, we can provide a path/s to file/s (including wildcards) we want to search in their content,
pass a standard output of a command as input or just get the input for a prompt by “find.exe”. It
is important to understand that the string we want to search for must be in quotes - as shown in
the screenshot below.

237 https://ss64.com/nt/find.html
236 https://medium.com/@boutnaru/the-windows-process-journey-forfiles-exe-execute-a-command-on-selected-files-3c10a9b2b5cf
235 https://man7.org/linux/man-pages/man1/find.1.html
234 https://man7.org/linux/man-pages/man1/grep.1.html
233 https://en.wikipedia.org/wiki/Find_(Windows)

81

https://ss64.com/nt/find.html
https://medium.com/@boutnaru/the-windows-process-journey-forfiles-exe-execute-a-command-on-selected-files-3c10a9b2b5cf
https://man7.org/linux/man-pages/man1/find.1.html
https://man7.org/linux/man-pages/man1/grep.1.html
https://en.wikipedia.org/wiki/Find_(Windows)

mspaint.exe (Paint)
“mspaint.exe” is a PE binary located at “%windir%\System32\mspaint.exe”. On 64-bit systems
there is also a 32-bit version of the binary located at “%windir%\SysWOW64\mspaint.exe”.
Both of the versions are digitally signed by Microsoft. It is a simple graphic/drawing editor
included as part of the Windows operating system since Windows 1.0. “mspaint.exe” different
editing tools like brushes, shape generators, pens, eraser, color selection, bucket (fill with color)
and magnifier238 - as shown in the screenshot below (It is the Windows 10 version).

Overall, “mspaint.exe” supports different image formats like: Windows bitmap (BMP), PNG,
GIF, JPG and single-page TIFF. By the way, AI art generators (DALL-E based) are going to be
part of Microsoft Paint239.

Moreover, support for layers (adding/removing/merging/duplicating/etc) and support for
opening/saving transparent PNG files had been added to paint240. Those features fit together with
the ability to remove the background of an image241. Lastly, we can check out the reference
implementation of “mspaint.exe” as part of ReactOS242.

242 https://github.com/reactos/reactos/tree/master/base/applications/mspaint
241 https://www.theverge.com/2023/9/7/23863377/microsoft-paint-background-removal-tool
240 https://www.theverge.com/2023/9/18/23879221/microsoft-paint-testing-layers-transparency-photoshop-features
239 https://en.wikipedia.org/wiki/Microsoft_Paint
238 https://mspaint.humanhead.com/#local:bd525d07a1f88

82

https://github.com/reactos/reactos/tree/master/base/applications/mspaint
https://www.theverge.com/2023/9/7/23863377/microsoft-paint-background-removal-tool
https://www.theverge.com/2023/9/18/23879221/microsoft-paint-testing-layers-transparency-photoshop-features
https://en.wikipedia.org/wiki/Microsoft_Paint
https://mspaint.humanhead.com/#local:bd525d07a1f88

services.exe (Service Control Manager)
“services.exe” is a PE binary located at “%windir%\System32\services.exe”. It is part of the
“Service Control Manager” (SCM), it provides an RPC (Remote Procedure Call) server ("RPC
Control\ntsvcs"). By leveraging it, programs can manipulate and configure Windows services243

locally or remotely244. A reference implementation of “services.exe” can be found as part of
ReactOS245.

Overall, “services.exe” is started when Windows starts. It is launched by “wininit.exe”246 on
session 0 and is executed with the permissions and privileges of the “NT
AUTHORITY\SYSTEM” (S-1-5-18) aka “Local System”. The binary is digitally signed by
Microsoft. There are two built-in major tools for communicating with the SCM: “sc.exe” and the
MMC snap-in “services.msc”247 .

Moreover, the SCM provides an interface for performing various tasks as described next.
Starting services/drivers on startup/demand. Maintaining/locking/unlocking the database of
installed services (HKLM\SYSTEM\CurrentControlSet\Services). Transmitting control requests
for running services. Maintaining the status of running drivers and services248.

Lastly, it should be executed only once on a Windows system regardless of the number of logged
in users. By the way, on 64-bit systems unlike other Windows binaries (like “cmd.exe”) we don’t
have a parallel 32-bit version of “services.exe”. We can also use the Win32 API for manipulating
services249. The client-side API for the SCM is implemented as part of
“%windir%\system32\advapi32.dll”250.

250 https://renenyffenegger.ch/notes/Windows/dirs/Windows/System32/services_exe/index
249 https://learn.microsoft.com/en-us/windows/win32/api/winsvc/
248 https://learn.microsoft.com/en-us/windows/win32/services/service-control-manager
247 https://medium.com/@boutnaru/the-windows-process-journey-mmc-exe-microsoft-management-console-a584afe66d86
246 https://medium.com/@boutnaru/the-windows-process-journey-wininit-exe-windows-start-up-application-5581bfe6a01e
245 https://github.com/reactos/reactos/tree/master/base/system/services
244 https://publik.tuwien.ac.at/files/publik_273621.pdf
243 https://medium.com/@boutnaru/windows-services-part-2-7e2bdab5bce4

83

https://renenyffenegger.ch/notes/Windows/dirs/Windows/System32/services_exe/index
https://learn.microsoft.com/en-us/windows/win32/api/winsvc/
https://learn.microsoft.com/en-us/windows/win32/services/service-control-manager
https://medium.com/@boutnaru/the-windows-process-journey-mmc-exe-microsoft-management-console-a584afe66d86
https://medium.com/@boutnaru/the-windows-process-journey-wininit-exe-windows-start-up-application-5581bfe6a01e
https://github.com/reactos/reactos/tree/master/base/system/services
https://publik.tuwien.ac.at/files/publik_273621.pdf
https://medium.com/@boutnaru/windows-services-part-2-7e2bdab5bce4

sc.exe (Service Control Manager Configuration Tool)
“sc.exe” is a PE binary located at “%windir%\System32\sc.exe”. By the way, on 64-bit systems
there is also a 32-bit version of the binary located at “%windir%\SysWOW64\sc.exe”. Both files
are digitally signed by Microsoft.

Overall, “sc.exe” is used to create/stop/start/query/delete/pause/configure/etc any Windows
service251. For example, “sc.exe query <servicename>” is done by reading a subkey/entries of the
service in the SCM (Service Control Manager) database - as shown in the screenshot below252.
The SCM database is located in the registry in the following location:
“HKLM\SYSTEM\CurrentControlSet\Services”.

Moreover, there are other command line options that can be used with “sc.exe” such as (but not
limited to) viewing the security descriptor of the service (“sdshow”), showing/changing the
description (“qdescription/description”), displaying/modifying the actions that are taken by the
service in case of a failure (“qfailure/failure”), showing dependencies (“EnumDepend”) and
creating/deleting a service (“create/delete”). By the way, “sc.exe” is also used for managing
drivers, which are defined as services which execute in kernel mode - as shown in the screenshot
below - more on that in future writeups253. Lastly, we can go over a reference implementation of
“sc.exe” which is part of ReactOS254.

254 https://github.com/reactos/reactos/tree/master/base/applications/sc
253 https://ss64.com/nt/sc.html
252 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/sc-query
251 https://medium.com/@boutnaru/windows-services-part-2-7e2bdab5bce4

84

https://github.com/reactos/reactos/tree/master/base/applications/sc
https://ss64.com/nt/sc.html
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/sc-query
https://medium.com/@boutnaru/windows-services-part-2-7e2bdab5bce4

phoneactivate.exe (Phone Activation UI)
“phoneactivate.exe” is a PE binary located at “%windir%\System32\phoneactivate.exe”. Unlike
other binaries there is no 32-bit version of it in Windows 64-bit systems (as we have with
“cmd.exe” for example). The binary is digitally signed by Microsoft.

Overall, we can activate Windows using an internet connection (aka Online activation). Also, we
can activate Windows by phone. In this case we try activating our device over the phone, this
connects us to Microsoft support for our region and country255.

Thus, the goal of “phoneactivate.exe” is to provide the phone activation UI (User Interface). One
common use case for using it is if the Windows license was used in another computer. After the
phone activation is launched we need to choose our country and select next - as shown in the
screenshot below. Then, using the phone numbers shown on the screen we can call the support
agent and provide the installation ID - also shown in the screenshot below256.

Lastly, after verifying the product key and using the installation ID the agent will provide a
confirmation ID for activating Windows. By the way, we can also launch “Contact Support” and
use a chat versus calling.

256 https://www.groovypost.com/howto/save-windows-10-spotlight-lock-screen-pictures/

255https://support.microsoft.com/en-us/windows/product-activation-for-windows-online-support-telephone-numbers-35f6a805-12
59-88b4-f5e9-b52cccef91a0

85

https://www.groovypost.com/howto/save-windows-10-spotlight-lock-screen-pictures/
https://support.microsoft.com/en-us/windows/product-activation-for-windows-online-support-telephone-numbers-35f6a805-1259-88b4-f5e9-b52cccef91a0
https://support.microsoft.com/en-us/windows/product-activation-for-windows-online-support-telephone-numbers-35f6a805-1259-88b4-f5e9-b52cccef91a0

choice.exe (Offers the User a Choice)
“choice.exe” (Offers the user a choice) is a PE binary located at
“%windir%\system32\choice.exe”. It is used for allowing users to select one (single key pressed)
item from a list of choices, it returns the index of the selected choice. By default, we can choose
between “Y” or “N” - as shown in the screenshot below257.

Moreover, we can customize the list of options and a text shown to the user using the different
switches of “choice.exe” (“/C” and /”M” respectively) - as shown in the screenshot below. There
are also other switches that allow us to control behavior of the command like: specify if the
choices are case-sensitive (“/CS”), timeout for selecting one of the choices (“/T”) and more258.

Lastly, on 64-bit systems there is also a 32-bit version of “choice.exe” located at
“%windir%\SysWOW64\choice.exe”. Both the 64-bit version and the 32-bit version are digitally
signed by Microsoft.

258 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/choice
257 https://ss64.com/nt/choice.html

86

https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/choice
https://ss64.com/nt/choice.html

qprocess.exe (Query Process Utility)
“qprocess.exe” is a PE binary located at “%windir%\System32\qprocess.exe”. It is used for
displaying information about processes. Also, it supports displaying information about processes
that have been executed on a Remote Desktop Session Host Server 259.

Moreover, as opposed to other executables like “cmd.exe”260, on 64-bit versions of Windows
there is no 32-bit version of “qprocess.exe”. The binary itself is digitally signed by Microsoft.

Lastly, “qprocess.exe” provides different command line switches. Using them we can list all
processes for all sessions (“*”), display processes based on/process id/username/session
name/session ID/program name261 - as shown in the screenshot below.

261 https://ss64.com/nt/query-process.html
260 https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b
259 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/qprocess

87

https://ss64.com/nt/query-process.html
https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/qprocess

rasdial.exe (Remote Access Command Line Dial UI)
“rasdial.exe” is a PE binary located at “%windir%\System32\rasdial.exe”. It is used for
connecting/disconnecting from a VPN (Virtual Private Network)/dial up connection262.

Overall, on 64-bit versions of Windows there is also a 32-bit version of the binary located at
“%windir%\SysWOW64\rasdial.exe”. Both the 64-bit version and the 32-bit version are digitally
signed by Microsoft.

Moreover, using the command line switches of “rasdial.exe” we can provide different
information for a connection. Examples are : a username for connection, a password, a phone
number to connect and a callback number. In case we execute “rasdail.exe” without any
arguments the status of the current connection is displayed263.

Lastly, to specify credentials (username and password) we can execute the following command:
“ rasdial ‘ConnectionName’ ‘Username’ ‘Password’ ”264.

264 https://gist.github.com/stormwild/ec0898fe8bf25f58f4a6bf2576dc5e3f
263 https://ss64.com/nt/rasdial.html
262 https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/ff859533(v=ws.11)

88

https://gist.github.com/stormwild/ec0898fe8bf25f58f4a6bf2576dc5e3f
https://ss64.com/nt/rasdial.html
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/ff859533(v=ws.11)

waitfor.exe (Wait/Send a Signal Over a Network)
“waitfor.exe” is a PE binary located at “%windir%\System32\waitfor.exe”. It is used for
sending/waiting for a signal on a system. We can also use “waitfor.exe” in order to synchronize
between computer systems over the network265.By the way, on 64-bit systems there is also a
32-bit version of the binary located at “%windir%\SysWOW64\waitfor.exe”. Both the 32-bit
version and the 64-bit version are digitally signed by Microsoft.

Overall, “waitfor.exe” is based on the mailslot266 IPC mechanism. When selecting a name for a
signal to wait for, it is used as part of the naming of the mailslot using the following format
“\\.\mailslot\WAITFOR.EXE\[SIGNAL NAME]” - as shown in the screenshot below. The signal
itself is not case sensitive (the same as files in Windows).

Moreover, when using “waitfor.exe” for remote synchronization we can provide the
username/password for authentication using the command line switches (“/u” and “/p”
respectively) and “/” for providing the name/IP of the remote system267.

Lasly, we can think of “waitfor.exe” as a combination of the Linux commands “kill”268 and the
“trap” command269. The first can send signals and the second one can wait for signals. Also,
“tap” can be implemented in different ways such as a builtin command of a shell.

269 https://man7.org/linux/man-pages/man1/trap.1p.html
268 https://man7.org/linux/man-pages/man1/kill.1.html
267 https://ss64.com/nt/waitfor.html
266 https://medium.com/@boutnaru/the-windows-concept-jou-d35f84d8cc02
265 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/waitfor

89

https://man7.org/linux/man-pages/man1/trap.1p.html
https://man7.org/linux/man-pages/man1/kill.1.html
https://ss64.com/nt/waitfor.html
https://medium.com/@boutnaru/the-windows-concept-jou-d35f84d8cc02
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/waitfor

tsdiscon.exe (Session Disconnection Utility)
“tsdiscon.exe” is a PE binary located at “%windir%\System32\tsdiscon.exe”. It is used for
disconnecting from a remote desktop services session. By the way, on 64-bit systems unlike
other binaries like “cmd.exe”270 there is not 32-bit version of “tsdison.exe” in parallel to the
64-bit version.

Overall, using different switches we can specify the ID of the session or the session name that we
want to disconnect. Also, we can provide the name of the terminal server containing the session
we want to disconnect (“/server:<SERVER_NAME>). By the way, if we don’t provide any
session ID/name the current session is going to be disconnected271.

Moreover, there should not be any data loss when disconnecting from a session. The applications
are still running, thus we can reconnect to the session. We must have full control
permissions/disconnect permissions in order to disconnect another user from a session272. This
can also be done for sessions within a virtual machine.

Lastly, when executing “tsdiscon.exe” an event is logged (ID 40) in the event viewer under the
following location “Applications and Services Logs -> Microsoft -> Windows ->
TerminalServices-LocalSessionManager -> Operational” - as shown in the screenshot below. By
the way, “reason code 11” means the user disconnecting from the session initiates the
disconnection273.

273 https://www.anyviewer.com/how-to/session-has-been-disconnected-reason-code-0-2578.html
272 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/tsdiscon
271 https://ss64.com/nt/tsdiscon.html
270 https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b

90

https://www.anyviewer.com/how-to/session-has-been-disconnected-reason-code-0-2578.html
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/tsdiscon
https://ss64.com/nt/tsdiscon.html
https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b

RunLegacyCPLElevated.exe (Running Legacy
Control Panel Applet in Elevated Mode)
“RunLegacyCPLElevated.exe” is a PE binary located at
“%windir%\System32\RunLegacyCPLElevated.exe”. It is used for running a legacy control
panel applet in elevated mode. On 64-bit Windows systems there is also a 32-bit version of the
binary located at “%windir%\SysWOW64\RunLegacyCPLElevated.exe”. By the way, both
binaries are digitally signed by Microsoft.

Overall, we should execute “RunLegacyCPLElevated.exe” using the following arguments
“RunLegacyCPLElevated.exe shell32.dll, Control_RunDLL <CPL_FILE_PATH_TO_LOAD>”.
An example of execution is “RunLegacyCPLElevated.exe shell32.dll, Control_RunDLL
%windir%\system32\ncpa.cpl” - as shown in the screenshot below.

Moreover, when executing the binary the chain of execution is as follows:
“RunLegacyCPLElevated.exe” performs an RPC call to execute “consent.exe”274, which is
started by the “Application Information” service (hosted by svchost.exe). After that
“RunLegacyCPLElevated.exe” is executed again with the same arguments using the elevated
access token, this is the process that loads and executes the function for the “*.cpl” file - as
shown in the screenshot below.

Lastly, we can think about “RunLegacyCPLElevated.exe” as a “rundll32.exe”275 which starts the
control panel applet with high permissions. Thus, it is similar to executing (without the elevation
part) to “rundll32.exe shell32.dll, Control_RunDLL %windir%\system32\ncpa.cpl”.

275 https://medium.com/@boutnaru/the-windows-process-journey-rundll32-exe-windows-host-process-415132f1363
274 https://medium.com/@boutnaru/the-windows-process-journey-consent-exe-consent-ui-for-administrative-applications-d8e6976e8e40

91

https://medium.com/@boutnaru/the-windows-process-journey-rundll32-exe-windows-host-process-415132f1363
https://medium.com/@boutnaru/the-windows-process-journey-consent-exe-consent-ui-for-administrative-applications-d8e6976e8e40

dism.exe (Deployment Image Servicing and
Management Tool)
“dism.exe” is a PE binary located at “%windir%\System32\dism.exe”. We can use it in order to
enumerate/install/uninstall/configure/update features and packages as part of the Windows
operating system276. On 64 bit systems there is also a 32-bit version of the binary located at
“%windir%\SysWOW64\Dism.exe”. Both binaries are digitally signed by Microsoft.

Overall, “dism.exe” can be used to prepare/service “Windows Images” that can be used for
Windows PE/Windows RE (Recovery Environment)/Windows Setup. It can also service “*.wim”
(Windows Image) files or “*.vhd”/”*.vhdx” (virtual hard disks) files277.

Lastly, “dism.exe” can be executed with elevated permissions which allows parsing of
information of image files and saving changes - as shown in the screenshot below278. Thus,
“dism.exe” can modify offline image files in the different ways such as: ways: add language
packs, add package updates, enable/disable OS features, combine images, adding device
drivers279.

279 https://www.slideserve.com/akamu/cn1176-computer-support-powerpoint-ppt-presentation
278 https://shopperlasopa179.weebly.com/dismexe-wim.html
277 https://learn.microsoft.com/en-us/windows-hardware/manufacture/desktop/what-is-dism?view=windows-11
276 https://ss64.com/nt/dism.html

92

https://www.slideserve.com/akamu/cn1176-computer-support-powerpoint-ppt-presentation
https://shopperlasopa179.weebly.com/dismexe-wim.html
https://learn.microsoft.com/en-us/windows-hardware/manufacture/desktop/what-is-dism?view=windows-11
https://ss64.com/nt/dism.html

chkdsk.exe (Check Disk Utility)
“chkdsk.exe” (Check Disk Utility) is a PE binary located at “%windir%\System32\chkdsk.exe”.
On 64-bit systems there is also a 32-bit version located at “%windir%\SysWOW64\chkdsk.exe”.
It is used to check the file-system/file-system metadata of a volume for logical/physical errors. In
order to execute it the user needs to be a member of the local administrator group280.

Moreover, “chkdsk.exe” can not only scan for errors but also fix some of them based on the
different switches given when executing it. If no parameter was given it will run in read-only
mode - as shown in the screenshot below. For fixing structural issues we can use “/f” and to try
recovering data from corrupted parts of the physical drive we can also add “/r”. To dismount the
drive for scanning and fixing we should use “/x”281.

Lastly, “chkdsk.exe” is a CLI tool which is digitally signed by Microsoft. When running a check
“chkdsk.exe” performs 3 main stages: examination of basic filesystem structure, examination of
file name linkage and examination of security descriptors - as shown in the screenshot below.

281 https://www.avg.com/en/signal/how-to-use-chkdsk-windows
280 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/chkdsk?tabs=event-viewer

93

https://www.avg.com/en/signal/how-to-use-chkdsk-windows
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/chkdsk?tabs=event-viewer

UserAccountControlSettings.exe (Configuring UAC
Settings)
“UserAccountControlSettings.exe” is a PE binary file located at
“%windir%\system32\UserAccountControlSettings.exe”. On 64-bit systems there is also a 32-bit
version of the file located at “%windir%\SysWOW64\UserAccountControlSettings.exe”. It is
used in order to change the settings of UAC (User Account Control)282. The binary is digitally
signed by Microsoft.

Overall, “UserAccountControlSettings.exe” allows a user to select the level of notifications in
case apps try to install software/change computer settings or whether the user itself tries to do
those things283. There are a total of four levels that we can select from (using the slider) - as
shown in the screenshot below.

First, the lower one is to never notify (whether app/user is trying to install software making
changes to Windows settings). Second, notify only if apps are trying to make changes (not
relevant if the user does that), by the way the desktop won’t be dimmed. Third, as the previous
but dims the desktop (meaning using the secure desktop), it is also the default setting. Fourth,
notify if an app/user is trying to install software/make changes to the Windows settings.

283 https://www.elevenforum.com/t/change-user-account-control-uac-settings-in-windows-11.1523
282 https://renenyffenegger.ch/notes/Windows/dirs/Windows/System32/UserAccountControlSettings_exe

94

https://www.elevenforum.com/t/change-user-account-control-uac-settings-in-windows-11.1523/
https://renenyffenegger.ch/notes/Windows/dirs/Windows/System32/UserAccountControlSettings_exe

DeviceCensus.exe (Device Information)
“DeviceCensus.exe” is a PE binary located at “%windir%\System32\DeviceCensus.exe”. As
opposed to other executables such as “cmd.exe”284 there is only a 64-bit version of
“DeviceCensus.exe” as part of a 64-bit version of Windows (no parallel 32-bit version). By the
way, the binary is digitally signed by Microsoft.

Overall, “DeviceCensus.exe” is executed by the “Task Scheduler”285 on Windows. There are two
tasks which are configured by default to run “DeviceCensus.exe”: “Device” and “Device User”.
Both of them can be found in the following location in the “Task Scheduler Library”:
“Microsoft\Windows\Device Information” - as shown in the screenshot below. The second one is
executed at log on of every user.

Moreover, “DeviceCensus.exe” accepts as command line arguments the following: “SystemCxt”
(used by the “Device” task) and “UserCxt” (used by the “Device User” task). Each flow which is
triggered based on them calls exported functions from “%windir%\system32\dcntel.dll”. The
first one calls the “RunSystemContextCensus” function and the second calls the
“RunUserContextCensus” function.

Lastly, based on different documentation “DeviceCensus.exe” helps Microsoft improve user
experience by understanding how their products are being used. It is used to collect information
like hardware in use, performance data and most used features. Thus, it is part of telemetry data
collection in Windows286.

286 https://www.file.net/process/devicecensus.exe.html
285 https://medium.com/@boutnaru/windows-scheduler-tasks-84d14fe733c0
284 https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b

95

https://www.file.net/process/devicecensus.exe.html
https://medium.com/@boutnaru/windows-scheduler-tasks-84d14fe733c0
https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b

MpCmdRun.exe (Microsoft Malware Protection
Command Line Utility)
“MpCmdRun.exe” is a PE binary located at “C:\ProgramData\Microsoft\Windows
Defender\Platform\[VERSION]\MpCmdRun.exe”. By the way, [VERSION] matches the file
version stored in the PE. Its description states it is the “Microsoft Malware Protection Command
Line Utility”. Also, the binary is also digitally signed by Microsoft. By the way, it is also called
“Microsoft Defender Antivirus command-line utility” as part of the Microsoft documentation287.
It is used as a command line frontend for “Microsoft Malware Protection”.

Moreover, by default there are four Windows schedule tasks288 which are based on
“MpCmdRun.exe” as their action: “Windows Defender Cache Maintenance” (periodic
maintenance task), “Windows Defender Cleanup” (periodic cleanup task), “Windows Defender
Scheduled Scan” (periodic scan task) and “Windows Defender Verification” (periodic
verification task) - as shown in the screenshot below. We can find all of them in the following
location : “Task Scheduler Library->Microsoft->Windows->Windows Defender”.

Lastly, “MpCmdRun.exe” has multiple command line arguments supported in different
categories such as scanning and tracing. We can get information about all the available options
using the “-h” switch or the “?”.

288 https://medium.com/@boutnaru/windows-scheduler-tasks-84d14fe733c0

287https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/microsoft-defender-antivirus-windows?view=o365
-worldwide

96

https://medium.com/@boutnaru/windows-scheduler-tasks-84d14fe733c0
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/microsoft-defender-antivirus-windows?view=o365-worldwide
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/microsoft-defender-antivirus-windows?view=o365-worldwide

MpDefenderCoreService.exe (Antimalware Core
Service)
“MpDefenderCoreService.exe” is a PE binary located at “C:\ProgramData\Microsoft\Windows
Defender\Platform\[VERSION]\MpDefenderCoreService.exe”. By the way, [VERSION]
matches the file version stored in the PE. Its description states it is the “Antimalware Core
Service”. Also, the binary is also digitally signed by Microsoft.

Moreover, “MpDefenderCoreService.exe” can be used as the start image of “Microsoft Defender
Antivirus Core service” (MdCoreSvc). It goal is to improve the stability and performance of
“Windows Defender Antivirus”289. The separation to different services is was not since the
creation of “Microsoft Defender Antivirus” - as shown in the screenshot below290.

Lastly, we can think about it as part of the processes of “Microsoft Defender Antivirus”291

together with processes like: “NisSrv.exe”292 and “MsMpEng.exe”.

292https://medium.com/@boutnaru/the-windows-process-journey-nissrv-exe-microsoft-network-realtime-inspection-service-48b1
245f434c

291https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/microsoft-defender-antivirus-windows?view=o365
-worldwide

290https://techcommunity.microsoft.com/t5/public-sector-blog/december-2023-microsoft-365-us-public-sector-roadmap-newslette
r/ba-p/4010161

289https://github.com/MicrosoftDocs/microsoft-365-docs/blob/public/microsoft-365/security/defender-endpoint/microsoft-defend
er-antivirus-windows.md

97

https://medium.com/@boutnaru/the-windows-process-journey-nissrv-exe-microsoft-network-realtime-inspection-service-48b1245f434c
https://medium.com/@boutnaru/the-windows-process-journey-nissrv-exe-microsoft-network-realtime-inspection-service-48b1245f434c
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/microsoft-defender-antivirus-windows?view=o365-worldwide
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/microsoft-defender-antivirus-windows?view=o365-worldwide
https://techcommunity.microsoft.com/t5/public-sector-blog/december-2023-microsoft-365-us-public-sector-roadmap-newsletter/ba-p/4010161
https://techcommunity.microsoft.com/t5/public-sector-blog/december-2023-microsoft-365-us-public-sector-roadmap-newsletter/ba-p/4010161
https://github.com/MicrosoftDocs/microsoft-365-docs/blob/public/microsoft-365/security/defender-endpoint/microsoft-defender-antivirus-windows.md
https://github.com/MicrosoftDocs/microsoft-365-docs/blob/public/microsoft-365/security/defender-endpoint/microsoft-defender-antivirus-windows.md

MsSense.exe (Windows Defender Advanced Threat
Protection Service Executable)
“MsSense.exe” (Windows Defender Advanced Threat Protection Service Executable) is a PE
binary located at “%ProgramFiles%\Windows Defender Advanced Threat
Protection\MsSense.exe”. It is used as the main binary of the “Windows Defender Advanced
Threat Protection Service” (Sense). The description of the services states “Windows Defender
Advanced Threat Protection service helps protect against advanced threats by monitoring and
reporting security events that happen on the computer”.

Moreover, the service is executed using the permissions/privileges of the “Local System” user293.
By the way, “MsSense.exe” is digitally signed by Microsoft. It is dependent on “MsSense.dll”
(Windows Defender Advanced Threat ProtectionSense Library), which by default is located in
the same directory as “MsSense.exe”.

Lastly, the goal of “Windows Defender Advanced Threat Protection” is to help detect,
investigate and respond to advanced attacks (focused on enterprises). This is done by providing
key information about who/what/why the attack happened - as shown in the screenshot below.
Also, it provides response recommendations and time-travel like capabilities (6-months historical
data on state of the machine) - as shown in the screenshot below294.

294 https://blogs.windows.com/windowsexperience/2016/03/01/announcing-windows-defender-advanced-threat-protection/
293 https://medium.com/@boutnaru/the-windows-security-journey-local-system-nt-authority-system-f087dc530588

98

https://blogs.windows.com/windowsexperience/2016/03/01/announcing-windows-defender-advanced-threat-protection/
https://medium.com/@boutnaru/the-windows-security-journey-local-system-nt-authority-system-f087dc530588

lsass.exe (Local Security Authority Process)
“lsass.exe” (Local Security Authority Subsystem Service) is a PE binary located in
“%windir%\System32\lsass.exe”. It is used for enforcing security policy, creating access tokens
for logging on users, writing the security event log and more295.

Moreover, “lsass.exe” can hold valuable authentication data like: kerberos tickets (TGT/TGS),
LM/NT hashes, encrypted password and more296. Thus,. Because “lsass.exe” stores the current
user OS credentials (and can even store domain admin credentials in some cases). Due to that, it
is an appealing target for attacks which can allow them to perform lateral movement. For
hardening “lsass.exe” administrators can: enable it as PPL, enable credential guard, enable
restricted admin mode for RDP and disable WDigest logon297.

Lastly, the “lsass.exe” process is hosting different services inside its own process memory
address space. We have “KeyIso” (CNG Key Isolation) which provides key process isolation to
private keys and associated cryptographic operations as required by Common Criteria. ”SamSs”
(Security Account Manager), the startup of this service signals other services that the SAM is
ready to accept requests. “VaultSvc” (Credential Manager), which is used to provide secure
storage and retrieval of credentials to users/applications/security service packages - as shown in
the screenshot below (taken from Process Explorer). By the way, if the computer is joined into a
domain there will also be a service for network logon.

297 https://www.microsoft.com/en-us/security/blog/2022/10/05/detecting-and-preventing-lsass-credential-dumping-attacks/
296 https://redcanary.com/threat-detection-report/techniques/lsass-memory/
295 https://en.wikipedia.org/wiki/Local_Security_Authority_Subsystem_Service

99

https://www.microsoft.com/en-us/security/blog/2022/10/05/detecting-and-preventing-lsass-credential-dumping-attacks/
https://redcanary.com/threat-detection-report/techniques/lsass-memory/
https://en.wikipedia.org/wiki/Local_Security_Authority_Subsystem_Service

Taskmgr.exe (Task Manager)
“Tasgmgr.exe” (Task Manager) is a PE binary located in “%windir%\system32\Taskmgr.exe”. It
can be used in order to view/manage current running processes, view system resources usage,
analyze performance and close unresponsive applications by leveraging its user interface298. The
binary is digitally signed by Microsoft. By the way, on 64-bit Windows systems there is also a
32-bit version of the binary located at “%windir%\SysWOW64\Taskmgr.exe”.

Overall, since Windows 11 22H2 “Task Manager” has a new design based on Fluent UI and
WinUI. Thus, the classic interface was changed to a hamburger menu layout - as shown in the
screenshot below. We can find the different viewing options: “Processes” (limited information
about each running process) , “Performance” (CPU/memory/IO/networking usage and
performance), “App History” (usage history for UWP applications), “Startup Apps”, “Users”,
“Details” and “Services” on the hamburger menu in the left side of the UI. This has been done to
improve the accessibility in case of touchscreen based devices299.

Lastly, we can go over a reference implementation of “takmgr.exe” as part of ReactOS300. Also,
there are different ways to open “Task Manager” such as (but not limited to):
“CTRL+Shift+ESC”, “CTRL+ALT+DELETE”-> “Task Manager” and “WinKey+X”->”Task
Manager”301. By the way, based on the command line arguments passed to “taskmgr.exe” we can
identify the way in which it was launched302.

302 https://www.hexacorn.com/blog/2018/07/22/taskmgr-exe-slashing-numbers/
301 https://www.howtogeek.com/66622/stupid-geek-tricks-6-ways-to-open-windows-task-manager/
300 https://github.com/reactos/reactos/tree/master/base/applications/taskmgr
299 https://www.bleepingcomputer.com/news/microsoft/hands-on-with-windows-11s-new-task-manager/
298 https://www.spyshelter.com/exe/microsoft-windows-taskmgr-exe/

100

https://www.hexacorn.com/blog/2018/07/22/taskmgr-exe-slashing-numbers/
https://www.howtogeek.com/66622/stupid-geek-tricks-6-ways-to-open-windows-task-manager/
https://github.com/reactos/reactos/tree/master/base/applications/taskmgr
https://www.bleepingcomputer.com/news/microsoft/hands-on-with-windows-11s-new-task-manager/
https://www.spyshelter.com/exe/microsoft-windows-taskmgr-exe/

LaunchTM.exe (Task Manager Launcher)
“LaunchTM.exe” (Task Manager Launcher) is a PE binary located in
“%windir%\System32\LaunchTM.exe”. It is used for launching “taskmgr.exe”303. The
“LaunchTM.exe” binary is digitally signed by Microsoft.

Overall, when pressing “CTRL+SHIFT+ESC” the executable “takmgr.exe” is not launched
directly. However, the “LaunchTM.exe” is the binary that is executed and it launches
“taskmgr.exe” - as shown in the screenshot below (taken using ProcMon from the Sysinternals
Suite). The “LaunchTM.exe” binary uses the following variable based path
“%WINDIR%\System32\Taskmgr.exe”. Thus, by overriding the WINDIR variable we can cause
a different binary to execute304.

Lastly, when pressing “CTRL+SHIFT+ESC” “LaunchTM.exe” is started by the
“winlogon.exe”305 process which is in the session as the users pressing the key combination306.
On 64-bit Windows systems there is also a 32-bit version of the binary located at
“%windir%\SysWOW64\LaunchTM.exe”.

306 https://twitter.com/uberAgentApp/status/1007766836677668864
305 https://medium.com/@boutnaru/the-windows-process-journey-winlogon-exe-windows-logon-application-88a1d4d3e13c
304 https://www.hexacorn.com/blog/2020/05/23/lolbin-ltd/
303 https://medium.com/@boutnaru/the-windows-process-journey-taskmgr-exe-task-manager-005753dbcf3a

101

https://twitter.com/uberAgentApp/status/1007766836677668864
https://medium.com/@boutnaru/the-windows-process-journey-winlogon-exe-windows-logon-application-88a1d4d3e13c
https://www.hexacorn.com/blog/2020/05/23/lolbin-ltd/
https://medium.com/@boutnaru/the-windows-process-journey-taskmgr-exe-task-manager-005753dbcf3a

makecab.exe (Cabinet Maker)
“makecab.exe” (Cabinet Maker) is a PE binary located in “%windir%\System32\makecab.exe”.
The binary is a lossless data compression tool built-in as part of the Windows operating system.
This is done by packaging files into a cabinet (*.cab) file307. The “makecab.exe” binary is signed
by Microsoft.

Moreover, a single “*.cab” file can contain up to 65,536 files with a limit of 1.99 GiB in size.
“makecab.exe” is a replacement for an old utility called “cabarc.exe”. Also, the “makecab.exe”
defaults are configured for optimizing to a floppy disk layout308. By the way, in 64-bit versions of
Windows there is also a 32-bit version of the binary located at
“%windir%\SysWOW64\makecab.exe”.

Lastly, we can create a cabinet file by specifying the file we want to compress and the name of
the destination file - as shown in the screenshot below. Also, we can use a directives file (using
the “/F” switch). Directives begin with a period ("."), followed by a command name, and
possibly by (blank delimited) arguments309. By the way, “diantz.exe” is the same as the
“makecab.exe” command are can be found in Windows servers310.

310 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/diantz
309 https://ss64.com/nt/makecab-directives.html
308 https://ss64.com/nt/makecab.html
307 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/makecab

102

https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/diantz
https://ss64.com/nt/makecab-directives.html
https://ss64.com/nt/makecab.html
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/makecab

control.exe (Windows Control Panel)
“control.exe” is a PE binary located in “%windir%\System32\control.exe”. It is the “Windows
Control Panel”311, which is used for configuring system-level features of the operating system.
The “control.exe” binary file is signed by Microsoft. Also, on 64-bit Windows systems, there is
also a 32-bit version of the binary located at “%windir%\SysWOW64\control.exe”.

Overall, when we execute a “*.CPL” file “control.exe” is launched with the path to the file given
as an argument - as shown in the screenshot below (taken using Sysinternals’ ProcMon). After it
is started “control.exe” launches “rundll32.exe”312 and calls the “Control_RunDLL” function
form “shell32.dll” with the path to “*.CPL” (which is basically a DLL file) file as an argument -
as shown also in the screenshot below. We can go over a reference implementation of
“control.exe” from ReactOS313.

Lastly, since “Windows Vista” some options that were accessed using a “*.CPL” files are
implemented as a separate “.exe” file. Also, using “control.exe” we can open specific “Control
Panel” windows or even pages such as: “control.exe /name Microsoft.ProgramsAndFeatures” or
“control.exe /name Microsoft.RegionalAndLanguageOptions /page /p:"administrative"”314. By
the way, such commands can also cause “SystemSettings.exe” to be launched315 .

315https://medium.com/@boutnaru/the-windows-process-journey-systemsettings-exe-immersive-control-panel-system-settings-ap
p-930969b84b40

314 https://learn.microsoft.com/en-us/windows/win32/shell/executing-control-panel-items
313 https://github.com/reactos/reactos/tree/master/base/applications/control
312 https://medium.com/@boutnaru/the-windows-process-journey-rundll32-exe-windows-host-process-415132f1363
311 https://medium.com/@boutnaru/the-windows-concept-journey-control-panel-34bf84ca7ff0

103

https://medium.com/@boutnaru/the-windows-process-journey-systemsettings-exe-immersive-control-panel-system-settings-app-930969b84b40
https://medium.com/@boutnaru/the-windows-process-journey-systemsettings-exe-immersive-control-panel-system-settings-app-930969b84b40
https://learn.microsoft.com/en-us/windows/win32/shell/executing-control-panel-items
https://github.com/reactos/reactos/tree/master/base/applications/control
https://medium.com/@boutnaru/the-windows-process-journey-rundll32-exe-windows-host-process-415132f1363
https://medium.com/@boutnaru/the-windows-concept-journey-control-panel-34bf84ca7ff0

SystemSettings.exe (Immersive Control Panel
System Settings App)
“SystemSettings.exe” (Immersive Control Panel System Settings App) is a PE binary located in
“%windir%\ImmersiveControlPanel\SystemSettings.exe”. It is used for viewing\making system
configuration changes in Windows316. Also, the “SystemSettings.exe” binary is signed by
Microsoft. The goal of the “System Settings” was to replace “Control Panel” which for more
than a decade has not happened yet317.

Overall, “SystemSettings.exe” is a UWP (Universal Windows Platform) application.
“SystemSettings.exe” provides a modern settings panel user interface - as shown in the
screenshot below. It has been included as part of Windows since “Windows 8”/”Windows Server
2012” while still having the old "Control Panel". We are still in a transformation period in which
Microsoft is migrating functions from “Control Panel” to the “System Settings”. However, some
functions are in both and some open even the old “Control Panel” dialog boxes318.

Lastly, the settings are clustered into different categories: “Home”, “System”, “Devices”,
“Phone”, “Network & Internet”, “Personalization”, “Apps”, “Accounts”, “Time & Language”,
“Gaming”, “Accessibility”, “Privacy & Security” and “Windows Update &” - as shown in the
screenshot below taken from Windows 11319.

319 https://betawiki.net/wiki/File:Windows11-22000.51-SettingsDark.png
318 https://www.file.net/process/systemsettings.exe.html
317 https://en.wikipedia.org/wiki/Settings_(Windows)
316 https://support.lenovo.com/us/en/solutions/ht515504-overview-of-system-settings-in-windows-11

104

https://betawiki.net/wiki/File:Windows11-22000.51-SettingsDark.png
https://www.file.net/process/systemsettings.exe.html
https://en.wikipedia.org/wiki/Settings_(Windows)
https://support.lenovo.com/us/en/solutions/ht515504-overview-of-system-settings-in-windows-11

isoburn.exe (Windows Disc Image Burning Tool)
“isoburn.exe” (Windows Disc Image Burning Tool) is a PE binary located in
“%windir%\System32\isoburn.exe”. It is used for burning ISO files without the need for third
party software. It was added as part of Windows 7320. Also, the binary is digitally signed by
Microsoft.

Moreover, on 64-bit versions of Windows there is also a 32-bit version of “isoburn.exe” located
at “%windir%\SysWOW64\isoburn.exe”. By the way, both versions are digitally signed by
Microsoft. Also, we can pass command line arguments to “isoburn.exe”321.

Lastly, we can you right click on an “*.iso” file and select “Burn disc image” that we open the
GUI of “isoburn.exe” - as shown in the screenshot below. It is important to know that
“isoburn.exe” also supports burning an “*.iso” files to USB devices322.

322 https://www.passcue.com/burn-iso-image-to-usb-on-windows.html
321 https://www.windows-faq.de/2018/01/27/isoburn-windows-iso-brennprogramm-als-kommandozeilen-befehl/
320 https://winaero.com/how-to-burn-an-iso-file-from-the-command-prompt-in-windows-10/

105

https://www.passcue.com/burn-iso-image-to-usb-on-windows.html
https://www.windows-faq.de/2018/01/27/isoburn-windows-iso-brennprogramm-als-kommandozeilen-befehl/
https://winaero.com/how-to-burn-an-iso-file-from-the-command-prompt-in-windows-10/

MoUsoCoreWorker.exe (MoUSO Core Worker
Process)
“MoUsoCoreWorker.exe” is an executable which is responsible for performing Windows
updates. It is a replacement for some of the operations performed by “wuauclt.exe”, which does
support updating Windows 10/11 environments as part of the move to “Unified Update Platform”
aka UUP323.

Thus, with the release of Windows 10 Microsoft has moved to UUP which allows a single
publishing, hosting, scanning and downloading for all types of OS updates (monthly and new
features updates) targeting any client devices which are running a Windows based OS324.

Moreover, The executable is located at “%windir%\System32\MoUsoCoreWorker.exe” (On
64-bit systems there is only a 64-bit version with no 32 bit version — in contrast to other
executables such as cmd.exe). “MoUsoCoreWorker.exe" is started by “svchost.exe” and
executed with the permissions of “Local System”325 which has an SID326 of “S-1-5-18”.

By the way, USO stands for “Update Session Orchestrator”. “MoUsoCoreWorker.exe” it is a
crucial component which helps in controlling the order in which updates are download and
installed in Windows327.

Lastly, each time Windows is looking for updates “MoUsoCoreWorker.exe” is started328. A
demonstration for that is shown in the screenshot below (taken using Sysinternals’ ProcMon).
The screenshot was taken after pressing on “Check for Updates” (from the “System Settings”).
We can see that “usoapi.dll” (Update Session Orchestrator API) is loaded by
“SystemSettings.exe”329 and then “MoUsoCoreWorker.exe” is started by “svchost.exe”.

329https://medium.com/@boutnaru/the-windows-process-journey-systemsettings-exe-immersive-control-panel-system-settings-ap
p-930969b84b40

328 https://www.groovypost.com/explainer/what-is-mousocoreworker-exe-and-why-is-it-running/
327 https://ugetfix.com/ask/how-to-fix-mouso-core-worker-process-high-cpu-and-memory-usage-in-windows/
326 https://medium.com/@boutnaru/windows-security-sid-security-identifier-d5a27567d4e5
325 https://medium.com/@boutnaru/the-windows-security-journey-local-system-nt-authority-system-f087dc530588
324 https://learn.microsoft.com/en-us/windows/deployment/update/windows-update-overview
323 https://helpdeskgeek.com/help-desk/what-is-mousocoreworker-exe-and-is-it-safe/

106

https://medium.com/@boutnaru/the-windows-process-journey-systemsettings-exe-immersive-control-panel-system-settings-app-930969b84b40
https://medium.com/@boutnaru/the-windows-process-journey-systemsettings-exe-immersive-control-panel-system-settings-app-930969b84b40
https://www.groovypost.com/explainer/what-is-mousocoreworker-exe-and-why-is-it-running/
https://ugetfix.com/ask/how-to-fix-mouso-core-worker-process-high-cpu-and-memory-usage-in-windows/
https://medium.com/@boutnaru/windows-security-sid-security-identifier-d5a27567d4e5
https://medium.com/@boutnaru/the-windows-security-journey-local-system-nt-authority-system-f087dc530588
https://learn.microsoft.com/en-us/windows/deployment/update/windows-update-overview
https://helpdeskgeek.com/help-desk/what-is-mousocoreworker-exe-and-is-it-safe/

sppsvc.exe (Microsoft Software Protection Platform
Service)
“sppsvc.exe” (Microsoft Software Protection Platform Service) is a PE binary located at
“%windir%\System32\sppsvc.exe”. On 64-bit versions of Windows there is no 32-bit version of
the executable as we have with other binaries such as “cmd.exe”330. Also, the “sppsvc.exe”
binary is digitally signed by Microsoft.

Overall, “sppsvc.exe” is the main image of the “Software Protection” service (aka sppsvc). The
description of the service states it: “Enables the download, installation and enforcement of digital
licenses for Windows and Windows applications. If the service is disabled, the operating system
and licensed applications may run in a notification mode. It is strongly recommended that you
not disable the Software Protection service”. The service is executed with the
permissions/privileges of the “Network Service”331 user - as shown in the screenshot below.

Thus, we can say that “sppsvc.exe” performs the following functions. Ensuring the Windows
operating system is genuine and properly activated. Performing periodic checks to ensure that
your Windows license is still valid (and not revoked). Also, handles the activation process when
you install a new copy of Windows or make significant hardware changes to your computer. It is
important to know that it can also collect and send anonymous data to Microsoft about your
system’s activation status332.

Lastly, the directory ““%windir%\System32\spp\” which holds activation tokens333. We can
backup files from that directory in order to reactivate different software offerings such as
Office334.

334 https://community.citrix.com/forums/topic/230472-layered-image-office-2016-will-not-activate-on-first-boot/
333 https://community.spiceworks.com/t/windows-10-repeatedly-deactivates/681310
332 https://malwaretips.com/blogs/microsoft-software-protection-platform-service/
331 https://medium.com/@boutnaru/the-windows-security-jorueny-network-service-nt-authority-network-service-e8706688e383
330 https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b

107

https://community.citrix.com/forums/topic/230472-layered-image-office-2016-will-not-activate-on-first-boot/
https://community.spiceworks.com/t/windows-10-repeatedly-deactivates/681310
https://malwaretips.com/blogs/microsoft-software-protection-platform-service/
https://medium.com/@boutnaru/the-windows-security-jorueny-network-service-nt-authority-network-service-e8706688e383
https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b

taskhostw.exe (Host Process for Windows Tasks)
“taskhostw.exe” (Host Process for Windows Tasks) is a PE binary located at
“%windir%\system32\taskhostw.exe”. It is responsible for hosting DLLs executed from tasks. It
is similar to “svchost.exe”335, which hosts DLLs implementing a specific service (and also
“dllhost.exe”). The “taskhostw.exe” is digitally signed by Microsoft. By the way, on 64-bit
versions of Windows there is no parallel 32-bit version of the binary as with “rundll32.exe”336.

Overall, we can find in “%windir%\Tasks” some tasks have their action configured with a
CLSID (Class ID), which is a COM object reference to a DLL337. “taskhostw.exe” should be a
child process of the “Task Scheduler”, which is hosted by “svchost.exe” -
as shown in the screenshot below, which was taken using Sysinternals’ “Process Explorer”.

Lastly, as with “svchost.exe” in which “Process Explorer” can display which services are hosted
also with “taskhostw.exe” we know that tasks are executed - as shown in the screenshot below.

337 https://chentiangemalc.wordpress.com/2011/05/08/windows-7-default-scheduled-taskscomplete-overview/
336 https://medium.com/@boutnaru/the-windows-process-journey-rundll32-exe-windows-host-process-415132f13634
335 https://medium.com/@boutnaru/the-windows-process-journey-svchost-exe-host-process-for-windows-services-b18c65f7073f

108

https://chentiangemalc.wordpress.com/2011/05/08/windows-7-default-scheduled-taskscomplete-overview/
https://medium.com/@boutnaru/the-windows-process-journey-rundll32-exe-windows-host-process-415132f1363
https://medium.com/@boutnaru/the-windows-process-journey-svchost-exe-host-process-for-windows-services-b18c65f7073f

wuauclt.exe (Windows Update Auto Update Client)
“wuauclt.exe” (Windows Update Auto Update Client) is a PE binary located at
“%windir%\system32\wuauclt.exe”. It is used as the “Windows Update Agent”, which basically
downloads new “Windows Update” files338. Also, “wuauclt.exe” is digitally signed by Microsoft.

Overall, “wuauclt.exe” is started by “MoUsoCoreWorker.exe”339 - as shown in the screenshot
below, which was taken using Sysinternals’ “Process Explorer” while performing a “Windows
Update”. The arguments which are passed to the executable are: “/UpdateDeploymentProvider
UpdateDeploymentProvider.dll /ClassId [CLSID] /RunHandlerComServer”. Using a similar
command “wuauclt.exe /UpdateDeploymentProvider <Full_Path_To_DLL>
/RunHandlerComServer” we can load an arbitrary DLL to the memory address space of a newly
created “wuauclt.exe”340.

Lastly, we can say that the “wuauclt.exe” command line utility allows us some control over the
functioning of the Windows Update Agent. Also, it is updated as part of “Windows Update”341.

341 https://learn.microsoft.com/pt-br/security-updates/windowsupdateservices/18139070?ref=dtm.uk
340 https://dtm.uk/wuauclt/
339 https://medium.com/@boutnaru/the-windows-process-journey-mousocoreworker-exe-mouso-core-worker-process-c39934971fbc
338 https://ss64.com/nt/wuauclt.html

109

https://learn.microsoft.com/pt-br/security-updates/windowsupdateservices/18139070?ref=dtm.uk
https://dtm.uk/wuauclt/
https://medium.com/@boutnaru/the-windows-process-journey-mousocoreworker-exe-mouso-core-worker-process-c39934971fbc
https://ss64.com/nt/wuauclt.html

TrustedInstaller.exe (Windows Modules Installer)
“TrustedInstaller.exe” (Local Security Authority Subsystem Service) is a PE binary located in
“%windir%\servicing\TrustedInstaller.exe”. It is the main image of the “TrustedInstaller” service
which is responsible for enabling installation/modification/removal of Windows updates and
optional components342.

Moreover, by default the “TrustedInstaller” service is set at “Manual”343 and is executed under
the “Local System” account344 - as shown in the screenshot below. By the way, the description of
the service states it: “Enables installation, modification, and removal of Windows updates and
optional components. If this service is disabled, install or uninstall of Windows updates might
fail for this computer”.

Lastly, when performing an update the “TrustedInstaller.exe” binary is executed by
“services.exe” - as shown in the screenshot below (taken using Sysinternals' ProcMon). By the
way, “TrustedInstaller.exe” is documented as standing for “Windows Trusted OS Component
Installer”. Also, it causes “TiWorker.exe” to be executed345.

345 https://www.file.net/process/trustedinstaller.exe.html
344 https://medium.com/@boutnaru/the-windows-security-journey-local-system-nt-authority-system-f087dc530588
343 https://learn.microsoft.com/en-us/answers/questions/597773/trustedinstaller-file-location
342 https://www.minitool.com/news/trustedinstaller-exe.html

110

https://www.file.net/process/trustedinstaller.exe.html
https://medium.com/@boutnaru/the-windows-security-journey-local-system-nt-authority-system-f087dc530588
https://learn.microsoft.com/en-us/answers/questions/597773/trustedinstaller-file-location
https://www.minitool.com/news/trustedinstaller-exe.html

extrac32.exe (CAB File Extract Utility)
“extrac32.exe” (Microsoft® CAB File Extract Utility) is a PE binary located in
“%windir%\System32\extrac32.exe”. The binary is used to extract files from a cabinet or source.
By default this utility does not display any output to the console. We can redirect the help output
using the more command346 - as shown in the screenshot below.

Moreover, the “extrac32.exe” binary is digitally signed by Microsoft. On 64-bit systems there is
also a 32-bit version of the binary located at “%windir%\SysWOW64\extrac32.exe”. We can use
it to extract one or more compressed “*.CAB” (cabinet) files and even extract specific file\s from
a cabinet file347.

Lastly, we can use “extrac32.exe” to read a file (download) for a UNC path, write (upload) to a
UNC path. copy a file and extract data to an ADS348. Also, while extracting specific file/s from a
“*.CAB” file/s we can specify a pattern like “*.*” for all files or a list of multiple files (separated
by blanks).

348 https://lolbas-project.github.io/lolbas/Binaries/Extrac32/
347 https://ss64.com/nt/extract.html
346 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/extract

111

https://lolbas-project.github.io/lolbas/Binaries/Extrac32/
https://ss64.com/nt/extract.html
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/extract

SgrmBroker.exe (System Guard Runtime Monitor
Broker Service)
“SgrmBroker.exe” is the main image of the “System Guard Runtime Monitor Broker” service.
The description of the service states it “Monitors and attests to the integrity of the Windows
platform”. The service is responsible for monitoring/proving the integrity of the operating
system349.

Overall, SGRM (System Guard Runtime Monitor) is used for remote attestation for verifying the
integrity of the operating system350. The “SgrmBroker.exe” process is executed using context of
the “Local System” user351. It is also configured as a protected process, specifically
“PsProtectedSignerWinTcb” - as shown in the screenshot below.

Lastly, “SgrmBroker.exe” is only one component of SGRM in conjunction with SgrmAgent.sys
(the agent driver that exposes functionality used by “SgrmBroker.exe”), “SgrmEnclave.dll” (the
enclave controller shim, contains the Lua runtime) and “SgrmLpac.exe” (A local RPC service,
which exposes a method to send an HTTP POST request to a specified endpoint). By the way,
there is also “SgrmEnclave_secure.dll” that is loaded/run on VTL-1 mode352.

352 https://blog.syscall.party/2022/08/02/inside-windows-defender-system-guard-runtime-monitor.html
351 https://medium.com/@boutnaru/the-windows-security-journey-local-system-nt-authority-system-f087dc530588
350 https://medium.com/@boutnaru/the-windows-security-journey-sgrm-system-guard-runtime-monitor-04b0971f2492
349 https://www.minitool.com/news/system-guard-runtime-monitor.html

112

https://blog.syscall.party/2022/08/02/inside-windows-defender-system-guard-runtime-monitor.html
https://medium.com/@boutnaru/the-windows-security-journey-local-system-nt-authority-system-f087dc530588
https://medium.com/@boutnaru/the-windows-security-journey-sgrm-system-guard-runtime-monitor-04b0971f2492
https://www.minitool.com/news/system-guard-runtime-monitor.html

ipconfig.exe (IP Configuration Utility)
“ipconfig.exe” (IP Configuration Utility) is a binary PE file located at
“%windir%\System32\ipconfig.exe”, on 64-bit systems there is also a 32-bit version located at
“%windir%\SysWOW64\ipconfig.exe”. This is a CLI application which is digitally signed by
Microsoft.

Overall, “ipconfig.exe” allows performing different tasks such as: retrieving information (using
“ipconfig.exe /all” which include data like IP address, NIC physical address, DNS server DHCP
info and more), releasing DHCP configuration (“ipconfig.exe /renew”) and reinitiating a DHCP
request (“ipconfig.exe /renew”). We can also display the content of the the DNS resolver cache
using “ipconfig.exe /displaydns” and purge it using “ipconfig.exe /flushdns”353 - details about
each argument of the utility is shown in the screenshot below.

Lastly, we can think about “ipconfig.exe” as an equivalent to “ifconfig”354 or “ip”355 in the sense
of managing network interfaces. On macOS we also have “ipconfig”356, used for
viewing/controlling IP configuration state. Also, we can checkout the reference implementation
of “ipconfig.exe” as part of ReactOS for more information357.

357 https://github.com/reactos/reactos/tree/master/base/applications/network/ipconfig
356 https://ss64.com/mac/ipconfig.html
355 https://linux.die.net/man/8/ip
354 https://man7.org/linux/man-pages/man8/ifconfig.8.html
353 https://www.ninjaone.com/blog/ipconfig-commands/

113

https://github.com/reactos/reactos/tree/master/base/applications/network/ipconfig
https://ss64.com/mac/ipconfig.html
https://linux.die.net/man/8/ip
https://man7.org/linux/man-pages/man8/ifconfig.8.html
https://www.ninjaone.com/blog/ipconfig-commands/

wifitask.exe (Wireless Background Task)
“wifitask.exe” (Wireless Background Task) is a PE binary located in
“%windir%\System32\wifitask.exe”. On 64-bit versions of Windows there is no parallel 32-bit
version of the binary like we have with other executables like “cmd.exe”358. Also, the binary is
digitally signed by Microsoft.

Overall, “wifitask” is configured as a scheduled task with the name of “WiFiTask”359. It is used
as a background task for performing per user and web interactions - as shown in the screenshot
below. It is part of the “Windows Connection Manager” (WCM), its service description states it
can perform automatic connect/disconnect decisions based on the network connectivity options
currently available to the device360.

Lastly, “wifitask.exe” is part of the “Wifi Network Manager” (as part of WCM). “wifitask.exe” is
dependent on “%windir%\System32\wlanapi.dll” which is the Windows WLAN AutoConfig
Client Side API DLL. It is used for controlling\managing wireless connections on a Windows
device. “wifitask.exe” helps in scanning for available wireless networks and connecting to a
chosen network361.

361 https://www.spyshelter.com/exe/microsoft-windows-wifitask-exe/
360 https://learn.microsoft.com/en-us/windows/win32/wcm/windows-connection-manager-portal
359 https://medium.com/@boutnaru/windows-scheduler-tasks-84d14fe733c0
358 https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b

114

https://www.spyshelter.com/exe/microsoft-windows-wifitask-exe/
https://learn.microsoft.com/en-us/windows/win32/wcm/windows-connection-manager-portal
https://medium.com/@boutnaru/windows-scheduler-tasks-84d14fe733c0
https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b

powershell.exe (Windows PowerShell)
“powershell.exe” (Windows PowerShell) is a PE binary located in
“%windir%\system32\WindowsPowerShell\v1.0\powershell.exe”. On 64-bit versions we also
have a 32-bit version of the binary located at
“%windir%\SysWOW64\WindowsPowerShell\v1.0\powershell.exe”. By the way, the binary is
digitally signed by Microsoft. It is important to know that we can check out the PowerShell
source code in its Github repository362.

Overall, “powershell.exe” is a cross-platform task automation solution which includes: a
scripting language, a configuration management framework and a command-line shell. It is
important to know that PowerShell can run on Windows, Linux, and macOS363. For more
information about announcements, features regarding “PowerShell” we can check out
Microsoft’s on demand video content364.

Moreover, when developing code we can use the “PowerShell Module Browser” from Microsoft
in order to search for modules and cmdlets365. A cmdlet is a lightweight command that is used in
the PowerShell environment366. There is also the “PowerShell Gallery” which is a central
repository of PowerShell modules/scripts/DCS resources367.

Lastly, we can think about “powershell.exe” as a more mature replacement for “cmd.exe”368.
This is due to the fact we can do anything supported in “cmd.exe” with “powershell.exe” and
much more than that. One of the biggest benefits of PowerShell is the fact cmdlets can return as
a return value an object and not just a string - as shown in the screenshot below (we call the kill
method of the return object).

368 https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b
367 https://www.powershellgallery.com/
366 https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/cmdlet-overview
365 https://learn.microsoft.com/en-us/powershell/module/
364 https://learn.microsoft.com/en-us/shows/browse?terms=powershell
363 https://learn.microsoft.com/en-us/powershell/scripting/overview
362 https://github.com/PowerShell/PowerShell

115

https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b
https://www.powershellgallery.com/
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/cmdlet-overview?view=powershell-7.4
https://learn.microsoft.com/en-us/powershell/module/
https://learn.microsoft.com/en-us/shows/browse?terms=powershell
https://learn.microsoft.com/en-us/powershell/scripting/overview
https://github.com/PowerShell/PowerShell

wermgr.exe (Windows Problem Reporting)
“wermgr.exe” is a PE binary located at “%windir%\system32\wermgr.exe”. On 64-bit systems
there is also a 32-bit version of the binary located at “%windir%\SysWOW64\wermgr.exe”. This
binary is one of the components of the “Windows Error Reporting” feature369 of the operating
system which interacts with the “Windows Error Reporting Service” (WerSvc). “wermgr.exe” is
used to read/parse/copy/move/delete report files files370.

Overall, when “wermgr.exe” is executed with the “-upload” argument the function
“wermgr!DoCoreUpload” is called. This function lists all the subdirectories under the
ReportQueue directory (“C:\ProgramData\Microsoft\Windows\WER\ReportQueue”) - as shown
in the printscreen below. Its goal is to read the error reports and submit them to Microsoft371.

Lastly, “wermgr.exe” is depended on “%windir%\system32\wer.dll” (Windows Error Reporting
DLL) and in the case of the 32-bit version it is dependent on “%windir%\SysWOW64\wer.dll”.
Also, the binary is digitally signed by Microsoft. When it is executed “wermgr.exe” can also
access other subdirectories of “C:\ProgramData\Microsoft\Windows\WER” like
“ReportArchive” and “Temp”.

371 https://unit42.paloaltonetworks.com/tale-of-a-windows-error-reporting-zero-day-cve-2019-0863/
370 https://unit42.paloaltonetworks.com/tale-of-a-windows-error-reporting-zero-day-cve-2019-0863/
369 https://medium.com/@boutnaru/the-windows-concept-journey-wer-windows-error-reporting-812316b8eb0a

116

https://unit42.paloaltonetworks.com/tale-of-a-windows-error-reporting-zero-day-cve-2019-0863/
https://unit42.paloaltonetworks.com/tale-of-a-windows-error-reporting-zero-day-cve-2019-0863/
https://medium.com/@boutnaru/the-windows-concept-journey-wer-windows-error-reporting-812316b8eb0a

WerFault.exe (Windows Problem Reporting)
“WerFault.exe” (Windows Problem Reporting) is a PE binary located at
“%windir%\system32\WerFault.exe”. On 64-bit systems there is also a 32-bit version of the
binary located at “%windir%\SysWOW64\WerFault.exe”. This binary is one of the components
of the “Windows Error Reporting” feature372 of the operating system which interacts with the
“Windows Error Reporting Service” (WerSvc). By the way, the binary is digitally signed by
Microsoft.

Moreover, “WerFault.exe” is created when a process crashes373. The goal of the binary is to
collect data, exception info and even memory dumps. Later “WerFault.exe” is used for uploading
the data to Microsoft’s cloud. In case there is no Internet connection “WerFault.exe” saves the
reports locally which can be later uploaded by “wermgr.exe”374.

Thus, in case of an unhandled exception a signal (WNF_WER_SERVICE_START) is sent to
ensure the “Windows Error Reporting Service” (WerSvc) is started. Afterwards the crashed
process talks with “WerSvc” using ALPC which leads to the creation of “WerFault.exe” as a
sub-process of the crashed process (with the same level of user-permissions and not with the
token of local system as “WerSvc”) - as shown in the diagram below. The reports created by
“WerFault.exe” are saved at “C:\ProgramData\Microsoft\Windows\WER\ReportQueue\” and
moved to “C:\ProgramData\Microsoft\Windows\WER\ReportArchive” in case the report was not
uploaded due to network problems/issues375.

375https://msrndcdn360.blob.core.windows.net/bluehat/bluehatil/2022/assets/doc/Exploiting%20Errors%20in%20Windows%20Er
ror%20Reporting.pdf

374 https://medium.com/@boutnaru/the-windows-process-journey-wermgr-exe-windows-problem-reporting-a9055d0a6b96
373 https://www.microsoft.com/en-us/security/blog/2021/03/02/hafnium-targeting-exchange-servers/
372 https://medium.com/@boutnaru/the-windows-concept-journey-wer-windows-error-reporting-812316b8eb0a

117

https://msrndcdn360.blob.core.windows.net/bluehat/bluehatil/2022/assets/doc/Exploiting%20Errors%20in%20Windows%20Error%20Reporting.pdf
https://msrndcdn360.blob.core.windows.net/bluehat/bluehatil/2022/assets/doc/Exploiting%20Errors%20in%20Windows%20Error%20Reporting.pdf
https://medium.com/@boutnaru/the-windows-process-journey-wermgr-exe-windows-problem-reporting-a9055d0a6b96
https://www.microsoft.com/en-us/security/blog/2021/03/02/hafnium-targeting-exchange-servers/
https://medium.com/@boutnaru/the-windows-concept-journey-wer-windows-error-reporting-812316b8eb0a

WerFaultSecure.exe (Windows Fault Reporting)
“WerFaultSecure.exe” (Windows Fault Reporting) is a PE binary located at
“%windir%\system32\WerFaultSecure.exe”. On 64-bit systems there is also a 32-bit version of
the binary located at “%windir%\SysWOW64\WerFaultSecure.exe”. This binary is one of the
components of the “Windows Error Reporting” feature376 of the operating system which interacts
with the “Windows Error Reporting Service” (WerSvc).

Moreover, as with the binary “WerFault.exe”377 also “WerFaultSecure.exe” is used for collecting
data, exception info and even memory dumps. The difference is that “WerFaultSecure.exe” is
used by the “Windows Error Reporting” service to create crash dumps from protected processes.
Due to that it is executed at elevated PP levels. Another difference is that “WerFaultSecure.exe”
encrypts the content of crash dumps before it is written to disk. The encryption is done by
leveraging asymmetric encryption to allow only Microsoft to decrypt the data378.

Lastly, although “WerFault.exe” and “WerFaultSecure.exe” are quite similar they have a
different string stored in the description field as part of the PE379 file format: “Windows Problem
Reporting” and “Windows Fault Reporting” respectively, at least they have the same icon - as
shown in the screenshot below. By the way, the “WerFaultSecure.exe” binary is digitally signed
by Microsoft.

379 https://wiki.osdev.org/PE
378 https://googleprojectzero.blogspot.com/2018/11/injecting-code-into-windows-protected.html
377 https://medium.com/@boutnaru/the-windows-process-journey-werfault-exe-windows-problem-reporting-77fe9b9fae34
376 https://medium.com/@boutnaru/the-windows-concept-journey-wer-windows-error-reporting-812316b8eb0a

118

https://wiki.osdev.org/PE
https://googleprojectzero.blogspot.com/2018/11/injecting-code-into-windows-protected.html
https://medium.com/@boutnaru/the-windows-process-journey-werfault-exe-windows-problem-reporting-77fe9b9fae34
https://medium.com/@boutnaru/the-windows-concept-journey-wer-windows-error-reporting-812316b8eb0a

cofire.exe (Corrupted File Recovery Client)
“cofire.exe” (Corrupted File Recovery Client) is a PE binary located in
“%windir%\System32\cofire.exe”. On 64-bit versions of Windows there is no parallel 32-bit
version of the binary like we have with other executables like “cmd.exe”380. The binary is
dependent on “wdi.dll” which is part of the “Windows Diagnostic Infrastructure” (WDI). By
extracting strings from the binary we can see the different messages that can be printed and get a
better understanding about the capabilities of the binary like: repairing files and failing to repair
a file - as shown in the screen below.

Overall, there are multiple cases in which files can be corrupted on a Windows device. Examples
of such cases are: system crash, sudden power outage, update errors and hard disk problems381.
The corrupted file client (“cofire.exe”) checks the value “EnabledScenarioExecutionLevel”
which is located in the following registry location
“HKLM\Software\Policies\Microsoft\Windows\WDI\{8519d925-541e-4a2b-8b1e-80
59d16082f2}” which is responsible for configuring corrupted file recovery behavior382. By the
way, “corefire.exe” is digitally signed by Microsoft.

Lastly, there are three different states for recovery behavior for corrupted files: “Regular”,
“Silent” and “Troubleshooting Only”. The first and the second perform detection,
troubleshooting, and recovery. The difference between them is that “Regular” does that with
minimal UI while “Silent” does it with no UI. The last one does only detection and
troubleshooting without automatic recovery. The state configuration is only relevant if the
“Diagnostic Policy Service” (DPS) is running383.

383 https://admx.help/?Category=Windows_10_2016&Policy=Microsoft.Policies.FileRecovery::WdiScenarioExecutionPolicy
382 https://csrc.nist.gov/CSRC/media/Projects/national-vulnerability-database/documents/CCE/cce-win2k8r2-5.20120314.xls
381 https://recoverit.wondershare.com/computer-problems/restoring-corrupted-files.html
380 https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b

119

https://admx.help/?Category=Windows_10_2016&Policy=Microsoft.Policies.FileRecovery::WdiScenarioExecutionPolicy
https://csrc.nist.gov/CSRC/media/Projects/national-vulnerability-database/documents/CCE/cce-win2k8r2-5.20120314.xls
https://recoverit.wondershare.com/computer-problems/restoring-corrupted-files.html
https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b

certutil.exe (Digital Certificate Utility)
“certutil.exe” (Digital Certificate Utility) is a binary PE file located at
“%windir%\system32\certutil.exe”. On 64-bit versions of Windows there is also a 32-bit version
of the binary located at “%windir%\SysWOW64\certutil.exe”. It is used to display certification
authority (CA) configuration information, configure Certificate Services, and back up and restore
CA components384. The binary is also digitally signed by Microsoft.

Overall, “certutil.exe” has multiple command line arguments available which can be used to:
dump configuration, dump PFX structure, parse and display the contents of a file using Abstract
Syntax Notation (ASN.1), decode base 64 files, submit/deny pending certificate request, attempt
to connect the Active Directory “Certificate Services Request” interface, shut down the “Active
Directory Certificate Services”, hashing files and more385 - as shown in the screenshot below.

Lastly, due to extensive command line switches that “certutil.exe” has it can be used as a “living
of the land” binary under Windows386. It can be leveraged for downloading files over http/s, we
even save the downloaded file as an alternate data stream387. By the way, there is also a reference
implementation of “certutil.exe” as part of ReactOS388.

388 https://github.com/reactos/reactos/tree/master/base/applications/cmdutils/certutil
387 https://medium.com/@boutnaru/the-windows-concept-journey-ads-alternate-data-stream-4cfafba9088c
386 https://lolbas-project.github.io/lolbas/Binaries/Certutil/
385 https://ss64.com/nt/certutil.html
384 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/certutil

120

https://github.com/reactos/reactos/tree/master/base/applications/cmdutils/certutil
https://medium.com/@boutnaru/the-windows-concept-journey-ads-alternate-data-stream-4cfafba9088c
https://lolbas-project.github.io/lolbas/Binaries/Certutil/
https://ss64.com/nt/certutil.html
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/certutil

reg.exe (Registry Console Tool)
“reg.exe” (Registry Console Tool) is a binary PE file located at “%windir%\system32\reg.exe”.
It is a command line utility which is used for performing registry operations389. operations. On
64-bit versions of Windows there is also a 32-bit version of the binary located at
“%windir%\SysWOW64\reg.exe”.

Overall, using “reg.exe” we can add a new subkey/entry (“reg add”), compare registry
subkeys/entries (“reg compare), copy entries (“reg copy”), delete subkeys/entries (“reg delete”),
export/import subkeys/entries/values (“reg export” or “reg import”), write/delete subkeys/entries
into a different subkey (“reg load” or “reg unload”), get a list of the next tier of subkeys/entries
from a specific key (“reg query”), save a copy of subkeys/entries/values (“reg save”) and write
from a backup subkeys/entries/values (“reg restore”)390 - an example is shown in the screenshot
below.

Lastly, we can export data from the registry to “*.reg file” and we can also import data from
“*.reg file”. We can perform part of the command not only locally but also on a remote machine
by leveraging the “Remote Registry” service391. For a reference implementation of “reg.exe” I
suggest going over the ReactOS implementation392.

392 https://github.com/reactos/reactos/tree/master/base/applications/cmdutils/reg
391 https://ss64.com/nt/reg.html
390 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/reg
389 https://medium.com/@boutnaru/the-windows-concept-journey-registry-0767e79387a9

121

https://github.com/reactos/reactos/tree/master/base/applications/cmdutils/reg
https://ss64.com/nt/reg.html
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/reg
https://medium.com/@boutnaru/the-windows-concept-journey-registry-0767e79387a9

bitsadmin.exe (BITS administration utility)
“bitadmin.exe” is a binary PE file located at “%windir%\system32\bitsadmin.exe”. It is used in
order to create download/upload jobs while also monitoring them393. On 64-bit systems there is
also a 32-bit version of it located at “%windir%\SysWOW64\bitsadmin.exe”. Alos, the binary is
digitally signed by Microsoft.

Overall, we can use “bitsadmin.exe” command line utility (which is built in to Windows) in
order to manage the BITS (Background Intelligent Transfer) service394. Thus, “bitsadmin.exe”
allows us to transfer large files from remote hosts, while throttling and asynchronously
transferring files between Windows devices using idle network bandwidth. By the way, BITS is
used by Windows Update, SUS, SMS and many third party packages395.

Lastly, today besides the “bitsadmin.exe” utility we can also use “powershell.exe”396 in order to
perform BITS operations. There are a couple of cmdlets for that397 - as shown in the screenshot
below. Due to the fact “bitsadmin.exe” has multiple command line switches I suggest going over
the documentation398 - as shown in the screenshot below.

.

398 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/bitsadmin
397 https://ss64.com/ps/bits.html
396 https://medium.com/@boutnaru/the-windows-process-journey-powershell-exe-windows-powershell-36daabaa74c4
395 https://ss64.com/nt/bitsadmin.html
394 https://medium.com/@boutnaru/the-windows-concept-journey-bits-background-intelligent-transfer-service-40532cd09cca
393 https://learn.microsoft.com/en-us/windows/win32/bits/bitsadmin-tool

122

https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/bitsadmin
https://ss64.com/ps/bits.html
https://medium.com/@boutnaru/the-windows-process-journey-powershell-exe-windows-powershell-36daabaa74c4
https://ss64.com/nt/bitsadmin.html
https://medium.com/@boutnaru/the-windows-concept-journey-bits-background-intelligent-transfer-service-40532cd09cca
https://learn.microsoft.com/en-us/windows/win32/bits/bitsadmin-tool

MsMpEng.exe (Antimalware Service Executable)
“MsMpEng.exe” is the main binary launched by the “WinDefend” (as shown below) Windows
service399. The binary is digitally signed by Microsoft and has the following text as part of the PE
description field: “Antimalware Service Executable”.

Moreover, the description of the services states it helps in protecting users from malware and
other potentially unwanted software - as shown in the screenshot below. “MsMpEng.exe” is a
core process of “Windows Defender” which is Microsoft‘s anti malware solution400.

Lastly, the binary is started from the following location: “C:\ProgramData\Microsoft\Windows
Defender\Platform\[VERSION]\MsMpEng.exe”. By the way, [VERSION] matches the file
version stored in the PE. By the way, in case you see high CPU usage by “MsMpEng.exe” it is
best to use the “New-MpPerformanceRecording” PowerShell cmdlet which collects performance
recording of “Microsoft Defender Antivirus” scans401. This is due to the fact that high CPU usage
can be just a symptom of something else402.

402 https://x.com/SwiftOnSecurity/status/1575625955766194176

401https://learn.microsoft.com/en-us/powershell/module/defenderperformance/new-mpperformancerecording?view=windowsserv
er2022-ps

400 https://www.neuber.com/taskmanager/process/msmpeng.exe.html
399 https://medium.com/@boutnaru/windows-services-part-2-7e2bdab5bce4

123

https://x.com/SwiftOnSecurity/status/1575625955766194176
https://learn.microsoft.com/en-us/powershell/module/defenderperformance/new-mpperformancerecording?view=windowsserver2022-ps
https://learn.microsoft.com/en-us/powershell/module/defenderperformance/new-mpperformancerecording?view=windowsserver2022-ps
https://www.neuber.com/taskmanager/process/msmpeng.exe.html
https://medium.com/@boutnaru/windows-services-part-2-7e2bdab5bce4

cacls.exe (Control ACLs Program)
“cacls.exe” is a PE binary located at “%windir%\System32\cacls.exe”. It is a CLI tool used for
displaying/modifying DACLs403 of files404 - an example is shown in the screenshot below. Also,
the “cacls.exe” file is digitally signed by Microsoft.

Moreover, on 64-bit systems there is also a 32-bit version of “cacls.exe” located at
“%windir%\SysWOW64\cacls.exe”. Also, this binary is digitally signed by Microsoft. We can
think about it similar to “chmod” on Unix/Linux systems405.

Thus, we can use the different command line arguments of “cacls.exe” in order to edit an ACL
(“/E”), perform the operation on the symbolic link and not on the target (“/L”), grant access
rights to a user (“/G”), revoke user’s rights (“/R”), replace access rights (“/P”), deny access for a
specific user (“/R”), replace the ACLs using an SDDL string (/S:SSDL) and more406.

406 https://www.computerhope.com/cacls.htm
405 https://linux.die.net/man/1/chmod
404 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/cacls
403 https://medium.com/@boutnaru/the-windows-security-journey-dacl-discretionary-access-control-list-c74545e472ec

124

https://www.computerhope.com/cacls.htm
https://linux.die.net/man/1/chmod
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/cacls
https://medium.com/@boutnaru/the-windows-security-journey-dacl-discretionary-access-control-list-c74545e472ec

icacls.exe (Integrity Control ACLs Program)

“icacls.exe” is a PE binary located at “%windir%\System32\icacls.exe”. The binary is digitally
signed by Microsoft. On 64-bit versions of Windows there is also a 32-bit version of the binary
located at “%windir%\SysWOW64\icacls.exe”. Like “cacls.exe”407 the “icacls.exe” utility is also
used for displaying/modifying DACLs408 of files and directories.

Moreover, “icacls.exe” is a replacement of “cacls.exe”409 due to the fact it supports both
viewing/modifying the integrity levels410 of files - as shown in the screenshot below.

Lastly, we have equivalent PowerShell cmdlets that we use: “Get-Acl”/”Set-Acl”411. Alos, there
is no reference implementation of “icacls.exe” as part of ReactOS, there is only for
“cacls.exe”412.

412 https://github.com/reactos/reactos/tree/master/base/applications/cacls
411 https://petri.com/icacls-command/
410 https://medium.com/@boutnaru/the-windows-security-journey-mandatory-integrity-control-mic-f7963550c0e7
409 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/icacls
408 https://medium.com/@boutnaru/the-windows-security-journey-dacl-discretionary-access-control-list-c74545e472ec
407 https://medium.com/@boutnaru/the-windows-process-journey-cacls-exe-control-acls-program-296ba9e7761c

125

https://github.com/reactos/reactos/tree/master/base/applications/cacls
https://petri.com/icacls-command/
https://medium.com/@boutnaru/the-windows-security-journey-mandatory-integrity-control-mic-f7963550c0e7
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/icacls
https://medium.com/@boutnaru/the-windows-security-journey-dacl-discretionary-access-control-list-c74545e472ec
https://medium.com/@boutnaru/the-windows-process-journey-cacls-exe-control-acls-program-296ba9e7761c

slui.exe (Windows Activation Client)
“slui.exe” (Windows Activation Client) is a PE binary located at
“%windir%\System32\slui.exe”. On 64-bit systems there is one 32-bit version of “slui.exe”. The
binary file is digitally signed by Microsoft. Also,”slui.exe” is an auto-elevated binary413.

Overall, SLUI stands for “Windows Software Licensing User Interface”. It runs in the
background in order to keep track of the system’s activation process. This means that every time
we try to change a product key/activate Windows this process manages tha414t.

When starting “slui.exe” it starts “changepk.exe”, which causes the service “Application
Information” to launch “consent.exe” - as shown in the screenshot below. By the way, the
description of the “Application Information” services states that it facilitates the running of
interactive applications with additional administrative privileges. If this service is stopped, users
will be unable to launch applications with the additional administrative privileges they may
require to perform desired user tasks.

414 https://candid.technology/slui-exe/
413 https://atomicredteam.io/defense-evasion/T1548.002/

126

https://candid.technology/slui-exe/
https://atomicredteam.io/defense-evasion/T1548.002/

xcopy.exe (Extended Copy Utility)
“xcopy.exe” is the “Extended Copy Utility” which is a command line is responsible for copying
files/directories including subdirectories415. “xcopy.exe” is a PE binary file located at
“%windir%\System32\net.exe”, in case of a 64-bit system there is also a 32-bit version located at
“%windir%\SysWOW64\xcopy.exe”.

Moreover, “xcopy.exe” is a separate executable in contrast to “copy” which is a builtin command
of the “cmd.exe” executable416. This means that when we perform a copy operation with “copy”
it is done by “cmd.exe”. By the way, the “xcopy.exe” binary is digitally signed by Microsoft.

Lastly, we can say that “xcopy” is similar to “copy” except that it has additional switches (there
is also “robocopy” - more on that in a future writeup) - as shown in the table below417. Examples
of such switches are “/COMPRESS” which can be used for requesting SMB network
compression while performing a file transfer and “/J” which supports unbuffered I/O that is
recommended for very large files418. Also, we can go over a reference implementation of
“xcopy” as part of ReactOS419.

419 https://github.com/reactos/reactos/tree/master/base/applications/cmdutils/xcopy
418 https://ss64.com/nt/xcopy.html
417 https://www.youtube.com/watch?v=cW-j_1qbAf8
416 https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b
415 https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/cc771254(v=ws.11)

127

https://github.com/reactos/reactos/tree/master/base/applications/cmdutils/xcopy
https://ss64.com/nt/xcopy.html
https://www.youtube.com/watch?v=cW-j_1qbAf8
https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/cc771254(v=ws.11)

hh.exe (Microsoft® HTML Help Executable)
“hh.exe” (Microsoft® HTML Help Executable) is a binary PE file located at
“%windir%\hh.exe”, on 64-bit system there is also a 32-bit version located at
“%windir%\SysWOW64\hh.exe”. It is used to open “*.chm” files (compiled help)420.

Overall, “*.chm” files are distributed as part of the “Microsoft HTML Help” system. “*.chm”
files contain different content like: HTML documents, JScript, VBA and ActiveX This content is
parsed/displayed by leveraging component which are part of the browser “Internet Explorer”421.
By the way, we can also explore file system locations using “hh.exe”- as shown in the screenshot
below.

Lastly, we can check out a reference implementation of “hh.exe” as part of ReactOS422. Also,
“hh.exe” leverages (loads) “hhctrl.ocx” (Microsoft® HTML Help Control) - as shown in the
screenshot below. It provides a rich feature set that includes: expanding table of contents,
keyword search, shortcuts, and pop-up help topics. Moreover, “hhctrl.ocx supports both
compiled html files (*.chm) and uncompiled html files423.

423 https://learn.microsoft.com/en-us/previous-versions/windows/desktop/htmlhelp/html-help-activex-control-overview
422 https://github.com/reactos/reactos/blob/master/base/applications/hh/main.c
421 https://attack.mitre.org/techniques/T1218/001/
420 https://learn.microsoft.com/en-us/previous-versions/windows/desktop/htmlhelp/about-the-html-help-executable-program

128

https://learn.microsoft.com/en-us/previous-versions/windows/desktop/htmlhelp/html-help-activex-control-overview
https://github.com/reactos/reactos/blob/master/base/applications/hh/main.c
https://attack.mitre.org/techniques/T1218/001/
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/htmlhelp/about-the-html-help-executable-program

HelpPane.exe (Microsoft Help and Support)
“HelpPane.exe” (Microsoft Help and Support) is a 64-bit PE binary file located at
“%windir%\HelpPane.exe”. By the way, on 64-bit versions of Windows there is no 32-bit
version of binary. As part of Windows 8/8.1 help components were shipped as part of the
operating system. This included the “Help and Support Windows” desktop application aka
“HelpPane.exe”. Since Windows 10 “HelpAndSupport” settings are deprecated because the help
component they are relevant for has been retired424.

However, “HelpPane.exe” is still part of the Windows operating system builtin executables.
Executing the binary without any parameters does not open any new window. In case we provide
command line arguments (such as -Embedding/-Home) “HelpPane.exe” can create a new process
of “Microsoft Edge” which is “msedge.exe”425 - as shown in the screenshot below (taken using
“Process Monitor”).

Lastly, running “HelpPane.exe” from Windows 10 can result in launching the “Getting Started”
application or opening a browser instance and redirecting to an online topic426. Also, the
“HelpPane.exe” binary is digitally signed by Microsoft.

426 https://learn.microsoft.com/en-us/windows-hardware/customize/desktop/unattend/microsoft-windows-helpandsupport
425 https://medium.com/@boutnaru/the-windows-process-journey-msedge-exe-microsoft-edge-747e00211a65

424https://learn.microsoft.com/en-us/windows-hardware/customize/desktop/unattend/microsoft-windows-helpandsupport-helpands
upport

129

https://learn.microsoft.com/en-us/windows-hardware/customize/desktop/unattend/microsoft-windows-helpandsupport
https://medium.com/@boutnaru/the-windows-process-journey-msedge-exe-microsoft-edge-747e00211a65
https://learn.microsoft.com/en-us/windows-hardware/customize/desktop/unattend/microsoft-windows-helpandsupport-helpandsupport
https://learn.microsoft.com/en-us/windows-hardware/customize/desktop/unattend/microsoft-windows-helpandsupport-helpandsupport

winhlp32.exe (Windows Winhlp32 Stub)
“winhlp32.exe” (Windows Winhlp32 Stub) is a 32-bit PE binary file located at
“%windir%\winhlp32.exe”. By the way, even on 64-bit versions of the Windows “winhlp32.exe”
is a 32-bit binary (there is no 64-bit version). By the way, the “Windows Help” application is not
supported since Windows 10/Windows Server 2012. Thus, “winhlp32.exe” is supported for
Windows Vista, Windows 7 Windows 8 or Windows 8.1427. For a reference implementation of
“winhelp32.exe” we can check out the source code of ReactOS428.

Overall, it is used for viewing 32-bit “*.hlp” files. If we want to read them on newer versions of
Windows we can download “winhlp32.exe” from the “Microsoft Download Center”429. For
security reasons some of the macros supported by “winhlp32.exe” are disabled such as:
“ExecFile”, “ShortCut”, “Test”, “ShellExecute”, “Generate”, “ExecProgram” and
“RegisterRotine”430.

Moreover, from Windows 10 when running the “winhelp32.exe” binary it starts
“HelpPane.exe”431, this is done using the “DCOM Server Process Launcher” service which is
hosted by the “svchost.exe” process432 - as shown in the screenshot below taken using “Process
Monitor”.

Lastly, “HelpPane.exe” launches a web browser application - as shown in the screenshot below.
The browser opens a website which states “Error opening Help in Windows-based programs:
"Feature not included" or "Help not supported"”433. Also, we can’t access “*.hlp” files stored on
intranet sites.

433https://support.microsoft.com/en-us/topic/error-opening-help-in-windows-based-programs-feature-not-included-or-help-not-su
pported-3c841463-d67c-6062-0ee7-1a149da3973b

432 https://medium.com/@boutnaru/the-windows-process-journey-svchost-exe-host-process-for-windows-services-b18c65f7073f
431 https://medium.com/@boutnaru/the-windows-process-journey-helppane-exe-microsoft-help-and-support-0174ea107681
430 https://www.sevenforums.com/tutorials/141117-help-hlp-files-cannot-open-windows-fix.html
429 https://www.microsoft.com/en-us/download/details.aspx?id=35449
428 https://github.com/reactos/reactos/blob/master/base/applications/winhlp32/winhelp.c

427https://support.microsoft.com/en-us/topic/error-opening-help-in-windows-based-programs-feature-not-included-or-help-not-su
pported-3c841463-d67c-6062-0ee7-1a149da3973b

130

https://support.microsoft.com/en-us/topic/error-opening-help-in-windows-based-programs-feature-not-included-or-help-not-supported-3c841463-d67c-6062-0ee7-1a149da3973b
https://support.microsoft.com/en-us/topic/error-opening-help-in-windows-based-programs-feature-not-included-or-help-not-supported-3c841463-d67c-6062-0ee7-1a149da3973b
https://medium.com/@boutnaru/the-windows-process-journey-svchost-exe-host-process-for-windows-services-b18c65f7073f
https://medium.com/@boutnaru/the-windows-process-journey-helppane-exe-microsoft-help-and-support-0174ea107681
https://www.sevenforums.com/tutorials/141117-help-hlp-files-cannot-open-windows-fix.html
https://www.microsoft.com/en-us/download/details.aspx?id=35449
https://github.com/reactos/reactos/blob/master/base/applications/winhlp32/winhelp.c
https://support.microsoft.com/en-us/topic/error-opening-help-in-windows-based-programs-feature-not-included-or-help-not-supported-3c841463-d67c-6062-0ee7-1a149da3973b
https://support.microsoft.com/en-us/topic/error-opening-help-in-windows-based-programs-feature-not-included-or-help-not-supported-3c841463-d67c-6062-0ee7-1a149da3973b

pnputil.exe (Plug and Play Utility)
“pnputil.exe” (Plug and Play Utility) is a PE binary file located at
“%windir%\System32\pnputil.exe”. On 64-bit versions there is no parallel 32-bit version of the
binary. It is used for managing device drivers. By the way, the binary is digitally signed by
Microsoft and included in every version of Windows starting with Windows Vista434.

Overall, based on the description stored in the PE header, “pnputil.exe” is a command line utility
which can be used for adding\installing or deleting or exporting or enumerating driver packages -
as shown in the screenshot below435. We can checkout Microsoft’s documentation GitHub
repository for PnPUtil usage examples436. For a reference implementation of “pnputil.exe” we
can checkout the source code or ReactOS437.

Lastly, among the return values we can get form PnPUtil we can find: “ERROR_SUCCESS”
(the requested operation completed successfully), “ERROR_NO_MORE_ITEMS” (no devices
match the supplied driver or the target device is already using a better\newer driver),
“ERROR_SUCCESS_REBOOT_REQUIRED” (the operation completed successfully and a
system reboot is required) and “ERROR_SUCCESS_REBOOT_INITIATED” (The operation
was successful and a system reboot is underway) as described in the documentation438.

2

438 https://github.com/MicrosoftDocs/windows-driver-docs/blob/staging/windows-driver-docs-pr/devtest/pnputil-return-values.md
437 https://github.com/reactos/reactos/blob/master/ntoskrnl/io/pnpmgr/pnputil.c
436 https://github.com/MicrosoftDocs/windows-driver-docs/blob/staging/windows-driver-docs-pr/devtest/pnputil.md5
435 https://www.pc-tips.info/tips/backup-maken-van-windows-10-drivers-en-drivers-herstellen/
434 https://ss64.com/nt/pnputil.html

131

https://github.com/MicrosoftDocs/windows-driver-docs/blob/staging/windows-driver-docs-pr/devtest/pnputil-return-values.md
https://github.com/reactos/reactos/blob/master/ntoskrnl/io/pnpmgr/pnputil.c
https://github.com/MicrosoftDocs/windows-driver-docs/blob/staging/windows-driver-docs-pr/devtest/pnputil.md5
https://www.pc-tips.info/tips/backup-maken-van-windows-10-drivers-en-drivers-herstellen/
https://ss64.com/nt/pnputil.html

ping.exe (TCP/IP Ping Command)
“ping.exe” (TCP/IP Ping Command) is a PE binary located at “%windir%\System32\PING.exe”.
On 64-bit systems there is a 32-bit version of the binary located at
“%windir%\SysWOW64\PING.EXE”. It is used for verifying IP connectivity with another node
in a TCP/IP based network. This is done by sending an ICMP (Internet Control Management
Protocol) “echo request” message. The receipt of replies with an “echo reply” message which is
displayed, along with round-trip times439.

Overall, “ping.exe” supports both IPv4 and IPv6 based communication. The binary is also
digitally signed by Microsoft. “ping.exe” is similar to the ping command in other operating
systems like Linux440 or macOS441. The backronym “Packet InterNet Groper” has been used for
ping more than 30442.

Lastly, we have different command line arguments supported by “ping.exe” that can modify its
behavior - as shown in the screenshot below. Examples of such arguments are: “-t” which sends
echo request messages until we stop it using “Ctrl+C”, “-a” that tries to resolve the IP address
and “-i” which allows setting the value of the TTL (Time To Live) field as part of the IP
header443. We can checkout a reference implementation of “ping.exe” as part of ReactOS444.

444 https://github.com/reactos/reactos/blob/master/base/applications/network/ping/ping.c
443 https://www.lifewire.com/ping-command-2618099
442 https://en.wikipedia.org/wiki/Ping_(networking_utility)
441 https://ss64.com/mac/ping.html
440 https://linux.die.net/man/8/ping
439 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/ping

132

https://github.com/reactos/reactos/blob/master/base/applications/network/ping/ping.c
https://www.lifewire.com/ping-command-2618099
https://en.wikipedia.org/wiki/Ping_(networking_utility)
https://ss64.com/mac/ping.html
https://linux.die.net/man/8/ping
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/ping

LsaIso.exe (Credential Guard & Key Guard)
“LsaIso.exe” is a PE binary located at “%windir%\system32\LsaIso.exe”. On 64-bit versions of
Windows we don’t have a 32-bit version of the binary as with other binaries like “cmd.exe”445. It
is used as part of “Credentials Guard” in order to isolate secrets (NTLM\Kerberos crypto
materials) by leveraging VBS (Virtualization Based Security). This is due to the fact Windows
stores secrets in the address space of “lsass.exe”446. Thus, they can be dumped/extracted by
different tools like Mimikaz447.

Overall, in case “Crentails Guard” is enabled “lsass.exe” (LSA process) talks with “LsaIso.exe”
(Isolated LSA) which stores the secrets by leveraging VBS (more on that in a future writeup) - as
shown in the diagram below. Because of that the secrets are not accessible by other
components/processes running on the system even with Administrator/Local System access448.

Lastly, It is important to understand that there are different cases in which “Credentials Guard”
won’t be able to protect Windows secrets like: keyloggers and non-microsoft security packages.
LSA isolated (“LsaIso.exe”) runs as an IUM (Isolated User Mode) process449. By the way, the
“LsaIso.exe” is digitally signed by Microsoft.

449 https://learn.microsoft.com/en-us/troubleshoot/windows-client/performance/lsaiso-process-high-cpu-usage
448 https://learn.microsoft.com/en-us/windows/security/identity-protection/credential-guard/how-it-works
447 https://github.com/ParrotSec/mimikatz
446 https://medium.com/@boutnaru/the-windows-process-journey-lsass-exe-local-security-authority-process-24166cb0358f
445 https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b

133

https://learn.microsoft.com/en-us/troubleshoot/windows-client/performance/lsaiso-process-high-cpu-usage
https://learn.microsoft.com/en-us/windows/security/identity-protection/credential-guard/how-it-works
https://github.com/ParrotSec/mimikatz
https://medium.com/@boutnaru/the-windows-process-journey-lsass-exe-local-security-authority-process-24166cb0358f
https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b

help.exe (Command Line Help Utility)
“help.exe” (Command Line Help Utility) is a PE binary file located at
“%windir%\System32\help.exe”. On 64-bit versions of Windows there is also a 32-bit version of
the binary located at “%windir%\SysWOW64\help.exe”. It is used for providing help
information on a few command line utilities (for example “cmd.exe” and “powershell.exe”) and
some shell built in commands like “assoc” and “call”450.

Overall, the help information is not stored as part of “help.exe”. Every time we want help
information about a command line utility “help.exe” runs the following command “cmd /c
{COMMAND_LINE_UTILITY} /?” using the “_wsystem” API function451. If the command
line utility is not a built in command of “cmd.exe”452 the utility is executed under “cmd.exe” - as
shown in the screenshot below

Lastly, we can check out a reference implementation of “help.exe” as part of ReactOS453. Also,
the help text displayed by “help.exe” is also not included directly inside the binary. This is due to
the fact the “Multilingual User Interface”454 is leveraged (for example
“%windir%\en-US\helppane.exe.mui”). By the way, the binary is digitally signed by Microsoft.

454 https://medium.com/@boutnaru/the-windows-concept-journey-multilingual-user-interface-mui-c225998d9262
453 https://github.com/reactos/reactos/blob/master/base/applications/cmdutils/help/help.c
452 https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b
451 https://learn.microsoft.com/en-us/cpp/c-runtime-library/reference/system-wsystem?view=msvc-170
450 https://renenyffenegger.ch/notes/Windows/dirs/Windows/System32/help_exe

134

https://medium.com/@boutnaru/the-windows-concept-journey-multilingual-user-interface-mui-c225998d9262
https://github.com/reactos/reactos/blob/master/base/applications/cmdutils/help/help.c
https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b
https://learn.microsoft.com/en-us/cpp/c-runtime-library/reference/system-wsystem?view=msvc-170
https://renenyffenegger.ch/notes/Windows/dirs/Windows/System32/help_exe

route.exe (TCP/IP Route Command)
“route.exe” (TCP/IP Route Command) is a PE binary located at
“%windir%\System32\ROUTE.EXE”. On 64-bit versions of Windows there is also a 32-bit
version of the binary located at “%windir%\SysWOW64\ROUTE.EXE”. It is used for
displaying/modifying entries of the local IP routing table. It is important to know that this
command line utility is available only if the Internet Protocol (TCP/IP) protocol is installed as a
component in the properties of a network adapter455.

Overall, by manipulating the routing table using “route.exe” we can route packets of network
traffic from one subnet to another. By default routes added (based on destination IP and subnet
mask) are not persistent unless the” -p” switch is used. Also, each route has its own metric (cost
for destination) which allows us to have multiple paths for redundancy while prioritizing
between them. The utility also supports patterns in different fields456. We can think about
“route.exe” as similar to “ip route” on Linux systems457. In case both IPv4 and IPv6 are enabled
“route.exe” will show us both routing tables - as shown in the screenshot below.

Lastly, “route.exe” leverages different API calls for reading/altering the routing table. Example
of such APIs are: “GetIpForwardTable” for retrieving the IPv4 routing table458 and
“GetAdaptersAddresses” for retrieving addresses associated with adapters on the device459. For a
reference implementation of “route.exe” we can check out the source code of ReactOS460.

460 https://github.com/reactos/reactos/blob/master/base/applications/network/route/route.c
459 https://learn.microsoft.com/en-us/windows/win32/api/iphlpapi/nf-iphlpapi-getadaptersaddresses
458 https://learn.microsoft.com/en-us/windows/win32/api/iphlpapi/nf-iphlpapi-getipforwardtable
457 https://ss64.com/bash/ip-route.html
456 https://ss64.com/nt/route.html
455 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/route_ws2008

135

https://github.com/reactos/reactos/blob/master/base/applications/network/route/route.c
https://learn.microsoft.com/en-us/windows/win32/api/iphlpapi/nf-iphlpapi-getadaptersaddresses
https://learn.microsoft.com/en-us/windows/win32/api/iphlpapi/nf-iphlpapi-getipforwardtable
https://ss64.com/bash/ip-route.html
https://ss64.com/nt/route.html
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/route_ws2008

whoami.exe (Displays Logged On User Information)
“whoami.exe” (Displays Logged On User Information) is a PE binary located at
“%windir%\System32\whoami.exe”. On 64-bit versions of Windows there is also a 32-bit
version of the binary located at “%windir%\SysWOW64\whoami.exe”. It is used for displaying
user\group and privileges information for the currently logged on user. In case we execute
“whoami.exe” without any parameters the current domain and user name are shown461.

Overall, we can use “whomai.exe” in order to show: the UPN (user principal name) of the
current user (/upn), logon ID of the current user (/logonid), privileges of the current user (/priv),
showing the groups to which the current user belongs to (/groups) and more. The output of the
command can also be in: table (default), list or csv (/fo FORMAT). For showing all information
from the current access token we can use the “/all” argument462 - as shown in the screenshot
below463.

Lastly, we can think about “whoami.exe” as an equivalent to the “whoami” command on
Linux464. Also, for a reference implementation of “whomai.exe” we can check out the source
code of ReactOS465.

465 https://github.com/reactos/reactos/blob/master/base/applications/cmdutils/whoami/whoami.c
464 https://man7.org/linux/man-pages/man1/whoami.1.html
463 https://mssqltrek.com/2012/03/12/whoami-and-echo-in-windows/
462 https://ss64.com/nt/whoami.html
461 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/whoami

136

https://github.com/reactos/reactos/blob/master/base/applications/cmdutils/whoami/whoami.c
https://man7.org/linux/man-pages/man1/whoami.1.html
https://mssqltrek.com/2012/03/12/whoami-and-echo-in-windows/
https://ss64.com/nt/whoami.html
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/whoami

tree.com (Tree Walk Utility)
“tree.com” (Tree Walk Utility) is a PE binary (although it has a “.com” extension) located at
“%windir%\System32\tree.com”. On 64-bit versions of Windows there is also a 32-bit version of
the binary located at “%windir%\SysWOW64\tree.com”. It is used for displaying the directory
structure of a path or a disk in a drive graphically (CLI based). If we don't specify a drive\path
the tree structure beginning with the current directory is printed466 - as shown in the screenshot
below.

Overall, it is an equivalent to the “tree” command in Linux467. The “tree.com” utility is relevant
for MS-DOS, Windows 200, Windows XP, Windows Vista, Windows 8, Windows 10 and
Windows 11. In order to include also the files inside the directories we can use the “/F” switch468

- as shown in the screenshot below.

Lastly, the “tree.com” binary is digitally signed by Microsoft. By the way, for a reference
implementation of “tree.com” we can check out the source code of ReactOS469.

469 https://github.com/reactos/reactos/blob/master/base/applications/cmdutils/tree/tree.c
468 https://www.computerhope.com/treehlp.htm
467 https://linux.die.net/man/1/tree
466 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/tree

137

https://github.com/reactos/reactos/blob/master/base/applications/cmdutils/tree/tree.c
https://www.computerhope.com/treehlp.htm
https://linux.die.net/man/1/tree
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/tree

replace.exe (Replace File Utility)
“replace.exe” (Replace File Utility) is a PE binary located at “%windir%\System32\replace.exe”.
On 64-bit systems there is also a 32-bit version of the binary located at
“%windir%\SysWOW64\replace.exe”. It is used for replacing existing files in a directory. If we
use the “/A” switch the utility adds new files to a directory as opposed to replacing existing
files470.

Overall, “replace.exe” is mostly relevant for cases where we want to replace files having the
same filename. There are multiple arguments that we can use for setting the behavior of the
utility such as: prompting for confirmation for each file (“/P”), replace read-only file (“/R”),
include sub-directories of the destination (“/S”), update only the files which are older then the
source (“/U”) and more471.

Lastly, for a reference implementation of “replace.exe” we can check out the code of ReactOS472.
Also, “replace.exe” is digitally signed by Microsoft. For each file which is replaced a message is
displayed - as shown in the screenshot below.

472 https://github.com/reactos/reactos/blob/master/base/applications/cmdutils/replace/replace.c
471 https://ss64.com/nt/replace.html
470 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/replace

138

https://github.com/reactos/reactos/blob/master/base/applications/cmdutils/replace/replace.c
https://ss64.com/nt/replace.html
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/replace

attrib.exe (Attribute Utility)
“attrib.exe” (Attribute Utility) is a PE binary located at “%windir%\System32\attrib.exe”. On
64-bit systems there is also a 32-bit version of the binary located at
“%windir%\SysWOW64\attrib.exe”. The utility is used for displaying, setting and\or removing
attributes assigned to files\directories. In case executing “attrib.exe” without any parameters it
displays the attributes for all files in the current directory473. By the way, the binary is digitally
signed by Microsoft.

Overall, if we want to set and attribute we use the “+” sign before the letter describing the
attribute. For removing an attribute we use the “-” sign. We can cluster the attributes to two
different groups: “attributes” and “extended attributes”. In the first group we have: read-only (R),
archive (A), system (S) and hidden (H). In the second group we have SMB blob (B), encrypted
(E), compressed (C), non indexed content (I), normal (N), offline (O), temporary (T), integrity
(I), no scrub (X), pinned which means "Always available on this device" setting for OneDrive
files and unpinned (U)474 - as shown in the screenshot below.

Lastly, we can also use “attrib.exe” for processing folders and not only files (“/D”) and/or apply
also for sub-directories (“/S”). Moreover, we can also perform tasks on the attributes of the
symbolic link (“/L”) versus the target of the Symbolic link475. For a reference implementation of
“attrib.exe” we can check out the code of ReactOS476.

476 https://github.com/reactos/reactos/blob/master/base/applications/cmdutils/attrib/attrib.c
475 https://monovm.com/blog/attrib-command/
474 https://ss64.com/nt/attrib.html
473 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/attrib

139

https://github.com/reactos/reactos/blob/master/base/applications/cmdutils/attrib/attrib.c
https://monovm.com/blog/attrib-command/
https://ss64.com/nt/attrib.html
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/attrib

tabcal.exe (Digitizer Calibration Tool)
“tabcal.exe” (Digitizer Calibration Tool) is a PE binary located at
“%windir%\System32\tabcal.exe”. On 64-bit systems there is no parallel 32-bit version of the
binary as opposed to other utilities like “cmd.exe”477.

Overall, “tabcal.exe” is used for calibrating touch screens as part of initial setup and/or because
of input issues - as shown in the screenshot below. By the way, in case we want to clear saved
calibration we just need to provide the “ClearCal” and “DisplayID” arguments to the
“tabcal.exe” executable for example: “tabcal.exe ClearCal DisplayID=\\.\DISPLAY1”478.

Lastly, the “tabcal.exe” is also described as “Tablet PC Calibration”. Also, the “tabcal.exe”
binary is digitally signed by Microsoft.

478 https://myelo.elotouch.com/support/s/article/How-to-Calibrate-HID-Monitor-Using-Windows-Tabcal
477 https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b

140

https://myelo.elotouch.com/support/s/article/How-to-Calibrate-HID-Monitor-Using-Windows-Tabcal
https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b

regedt32.exe (Registry Editor Utility)
“regedt32.exe” (Registry Editor Utility) is a PE binary file located at
“%windir%\system32\regedt32.exe”. On 64-bit systems there is also a 32-bit version of the
binary located at “%windir%\SysWOW64\regedt32.exe”. Since Windows XP/Windows 2003
Server “regedt32.exe” executes “regedit.exe”479 - as shown in the screenshot next.

Overall, “regedt32.exe” is based on the MDI (Multiple Document Interface) which means a
single program can display one or more windows\documents480. - as shown in the screenshot
below (taken using https://copy.sh/v86/?profile=windows2000).

Lastly, one of the big differences between “regedit.exe” and “regedt32.exe” in old Windows
versions was that “regedt32.exe” supported reading/modifying permissions to registry keys - as
shown also in the screenshot below. For a reference implementation of “regedt32.exe” we can
check out the source code of ReactOS481.

481 https://github.com/reactos/reactos/blob/master/base/applications/regedt32/regedt32.c

480https://www2.isye.gatech.edu/~mgoetsch/cali/Windows%20Configuration/Windows%20Configuration%20Html/WindowsNT4
_02.htm

479 https://superuser.com/questions/295605/what-are-main-differences-between-two-windows-registry-editors-regedit-and-reged

141

https://copy.sh/v86/?profile=windows2000
https://github.com/reactos/reactos/blob/master/base/applications/regedt32/regedt32.c
https://www2.isye.gatech.edu/~mgoetsch/cali/Windows%20Configuration/Windows%20Configuration%20Html/WindowsNT4_02.htm
https://www2.isye.gatech.edu/~mgoetsch/cali/Windows%20Configuration/Windows%20Configuration%20Html/WindowsNT4_02.htm
https://superuser.com/questions/295605/what-are-main-differences-between-two-windows-registry-editors-regedit-and-reged

Bubbles.scr (Bubbles ScreenSaver)
“Bubbles.scr” (Bubbles ScreenSaver) is a PE binary (with a “.scr” extension) located at
“%windir%\system32\Bubbles.scr”. On 64-bit systems there is no parallel 32-bit version of the
binary as opposed to other utilities like “cmd.exe”482. By the way, the binary is digitally signed
by Microsoft.

Overall, this screensaver basically draws bubbles over the user’s desktop using different colors -
as shown in the screenshot below483. By the way, a screensaver is a computer program that can
fill the screen with images/patterns when the computer is idle484.

Lastly, the bubbles screensaver does not have any options\ settings that are modifiable using the
“Screen Saver Settings” menu. However, we can still customize it by creating/altering registry
values in the following location:
“HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Screensavers\Bubbles”. Among those
values are: “ShowShadows”, “MaterialGlass”, "SphereDensity” and “SpanMultiMon”485.

485 https://winaero.com/customize-screen-savers-in-windows-10-using-secret-hidden-options/
484 https://en.wikipedia.org/wiki/Screensaver
483 https://archive.org/details/bubbles_screensaver_20210401
482 https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b

142

https://winaero.com/customize-screen-savers-in-windows-10-using-secret-hidden-options/
https://en.wikipedia.org/wiki/Screensaver
https://archive.org/details/bubbles_screensaver_20210401
https://medium.com/@boutnaru/the-windows-process-journey-cmd-exe-windows-command-processor-501be17ba81b

systeminfo.exe (Displays system information)
“systeminfo.exe” (Displays system information) is a PE located at
“%windir%\system32\systeminfo.exe”. On 64-bit systems there is also a 32-bit version of the
binary located at “%windir%\SysWOW64\systeminfo.exe”. It is used for displaying
configuration information regarding a specific system (local/remote) and its operating system.
Among the information displayed we can find: operating system configuration, security
information, product ID and hardware properties like RAM\disk space\network cards486 - as
shown in the screenshot below (the output is not full).

Overall, we can collect and display the information of a remote system (using the “/S” switch)
while providing a username (“/U”) and a password (“/P”) for a user context to execute. Also,
there are options for specifying the output format (“/FO”) which include: “Table”, “List” or
“CSV”487.

Lastly, the utility is relevant from Windows XP (Professional only) until (and including)
Windows 11488. For a reference implementation of “systeminfo.exe” we can check the code of
ReactOS489. By the way, we can think about “systeminfo.exe” as similar (but not identical) to
PowerShell’s “Get-ComputerInfo” cmdlet490 and “msinfo32.exe”.

490 https://blog.idera.com/database-tools/get-computerinfo-vs-systeminfo-exe-part-1/
489 https://github.com/reactos/reactos/blob/master/modules/rosapps/applications/sysutils/systeminfo/systeminfo.c
488 https://www.computerhope.com/systemin.htm
487 https://ss64.com/nt/systeminfo.html
486 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/systeminfo

143

https://blog.idera.com/database-tools/get-computerinfo-vs-systeminfo-exe-part-1/
https://github.com/reactos/reactos/blob/master/modules/rosapps/applications/sysutils/systeminfo/systeminfo.c
https://www.computerhope.com/systemin.htm
https://ss64.com/nt/systeminfo.html
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/systeminfo

diskpart.exe (Microsoft DiskPart Utility)
“diskpart.exe” (Microsoft DiskPart Utility) is a PE binary located at
“%windir%\system32\diskpart.exe”. On 64-bit systems there is a 32-bit version of the binary
located at “%windir%\SysWOW64\diskpart.exe”. It is a command line interpreter which is used
to manage the systems’ drivers (disks/partitions/volumes/virtual disks) - as shown in the
screenshot below. It is important to understand that admin permissions are needed (for example
being part of the local Administrators group) in order to use “diskpart.exe”491.

Overall, “diskpart.exe” can be used for converting a FAT/FAT32 volume to NTFS without
affecting the files/directories (using the “convert” command). Also, the utility supports MBR
(Master Boot Record) and GPT (GUID Partition Table) partition layout schemes. “diskpart.exe”
may also be used with VHD (Virtual Hard Disk) files for attaching/detaching and more492. The
binary is digitally signed by Microsoft and in case we don’t have admin permissions
“consent.exe”493 is executed for starting a new process with the relevant permissions.

Lastly, the “diskpart.exe” utility has been available since Windows 2000. By the way, we can
also create a text file with diskpart commands and leverage it as a script (by using the “/s”
switch). For a reference implementation of “diskpart.exe” we can check out the source code of
ReactOS494.

494 https://github.com/reactos/reactos/tree/master/base/system/diskpart

493https://medium.com/@boutnaru/the-windows-process-journey-consent-exe-consent-ui-for-administrative-applications-d8e6976
e8e40

492 https://ss64.com/nt/diskpart.html
491 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/diskpart

144

https://github.com/reactos/reactos/tree/master/base/system/diskpart
https://medium.com/@boutnaru/the-windows-process-journey-consent-exe-consent-ui-for-administrative-applications-d8e6976e8e40
https://medium.com/@boutnaru/the-windows-process-journey-consent-exe-consent-ui-for-administrative-applications-d8e6976e8e40
https://ss64.com/nt/diskpart.html
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/diskpart

bootmgr.exe (Windows Boot Manager)
“bootmgr.exe” (Windows Boot Manager) is a PE binary that can be located in one of two
locations. The binary could be located on the primary drive (for example “C:\). Also,
“bootmgr.exe” could be located as part of the “System Reserved Partition”. “bootmgr.exe”
(together with “winload.exe”) replaces NTLDR which was used in older versions of Windows
such as “Windows XP”495.

Overall, in case our system leverages BIOS firmware (instead of UEFI firmware, more on that in
a future writeup) it calls the MBR (Master Boot Record) which jumps to the VBR (Volume Boot
Loader) Windows’ specific code. The VBR (aka PBR which stands for “Partition Boot Record”)
code loads “bootmgr.exe” which reads BCD (Boot Configuration Data) for determining which
OSes are present and if to display a menu for selecting between boot options. By the way, until
Vista the data was stored in “boot.ini”496 - as shown in the diagram below497.

Lastly, it is important to know that without BOOTMGR the operating system won’t load and the
following error message would display “‘BOOTMGR is missing press Crl+Alt+Del to restart”498.
For a reference implementation of “bootmgr.exe” we can check out the source of ReactOS499.

499 https://github.com/reactos/reactos/blob/master/boot/environ/app/bootmgr/bootmgr.c
498 https://www.diskpart.com/articles/bootmgr-is-missing-5740i.html

497https://web.archive.org/web/20220312143249/http://www.multibooters.com/guides/boot-sequence-of-mixed-windows-multibo
ot.html

496 https://en.wikipedia.org/wiki/Windows_Boot_Manager
495 https://www.lifewire.com/windows-boot-manager-bootmgr-2625813

145

https://github.com/reactos/reactos/blob/master/boot/environ/app/bootmgr/bootmgr.c
https://www.diskpart.com/articles/bootmgr-is-missing-5740i.html
https://web.archive.org/web/20220312143249/http://www.multibooters.com/guides/boot-sequence-of-mixed-windows-multiboot.html
https://web.archive.org/web/20220312143249/http://www.multibooters.com/guides/boot-sequence-of-mixed-windows-multiboot.html
https://en.wikipedia.org/wiki/Windows_Boot_Manager
https://www.lifewire.com/windows-boot-manager-bootmgr-2625813

PathPing.exe (TCP/IP PathPing Command)
“PathPing.exe” (TCP/IP PathPing Command) is a PE binary located at
“%windir%\system32\PATHPING.EXE”. On 64-bit systems there is also a 32-bit version of the
binary located at “%windir%\SysWOW64\PATHPING.EXE”. We can use it for collecting
information about network latency\network loss at intermediate hops for network
transmissions500 - as shown in the example below. By the way, the binary is also digitally signed
by Microsoft.

Overall, we can think about “pathping.exe” as a combination between “ping.exe”501 and
“tracert.exe”. This command line utility has been included as part of the operating system since
“Windows 2000”502. The way in which “PathPing.exe” works is by sending packets (using
ICMP) to each router on the way to a final destination over a period of time. Based on those
packets it computes results from each hop503.

Lastly, by providing different switches we can control the behavior of “PathPing.exe” like
forcing IPv4 (“-4”) or IPv6 (“-6), declare a wait period between ICMP echo requests (“-p”),
setting the max number of hops to search for a target (“-h”), disabling the resolving of addresses
to hostnames (“-n”), checking for RSVP (Resource Reservation Protocol) awareness (“-R”) and
more504.

504 https://ss64.com/nt/pathping.html
503 https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-2000-server/cc958876(v=technet.10)
502 https://en.wikipedia.org/wiki/PathPing
501 https://medium.com/@boutnaru/the-windows-process-journey-ping-exe-tcp-ip-ping-command-80d958f515d8
500 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/pathping

146

https://ss64.com/nt/pathping.html
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-2000-server/cc958876(v=technet.10)?redirectedfrom=MSDN
https://en.wikipedia.org/wiki/PathPing
https://medium.com/@boutnaru/the-windows-process-journey-ping-exe-tcp-ip-ping-command-80d958f515d8
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/pathping

ComputerDefaults.exe (Set Program Access and
Computer Defaults Control Panel)
“ComputerDefaults.exe” (Set Program Access and Computer Defaults Control Panel) is a PE
binary located at “%windir%\system32\ComputerDefaults.exe”. On 64-bit systems there is also a
32-bit version of the binary located at “%windir%\SysWOW64\ComputerDefaults.exe”. It is
used for managing/configuring default applications for different tasks such as emailing, web
browsing, video playing and mode505 - as shown in the screenshot below (it is the “Windows 10”
layout, under “Windows 11” the layout is different). By the way, the binary is also digitally
signed by Microsoft.

Overall, “ComputerDefaults.exe” needs administrator permissions because of that
“consent.exe”506 is launched (by the “AppInfo” service). In case the user approves (if he needs to
based on the UAC settings) it causes the “Defaults App” menu of “SystemSettings.exe” to
appear507. This is done using different services and processes related to the “Universal Windows
Platform” (UWP).

Lastly, when “ComputerDefaults.exe” is started it checks for the specific values in the following
registry location “HKCU\Software\Classes\ms-settings\Shell\Open\command”. By setting them
we can instruct “ComputerDefaults.exe” to execute commands. Due to the fact the binary is auto
elevated we can use it as a UAC508 bypass509. It is important to know that “Windows Defender”
flags that as “VirTool:Win32/UACBypassExp.gen!B”.

509 https://github.com/blue0x1/uac-bypass-oneliners
508 https://medium.com/@boutnaru/the-windows-security-journey-uac-user-account-control-ce395df5c784

507https://medium.com/@boutnaru/the-windows-process-journey-systemsettings-exe-immersive-control-panel-system-settings-ap
p-930969b84b40

506https://medium.com/@boutnaru/the-windows-process-journey-consent-exe-consent-ui-for-administrative-applications-d8e6976
e8e40

505 https://lolbas-project.github.io/lolbas/Binaries/ComputerDefaults/

147

https://github.com/blue0x1/uac-bypass-oneliners
https://medium.com/@boutnaru/the-windows-security-journey-uac-user-account-control-ce395df5c784
https://medium.com/@boutnaru/the-windows-process-journey-systemsettings-exe-immersive-control-panel-system-settings-app-930969b84b40
https://medium.com/@boutnaru/the-windows-process-journey-systemsettings-exe-immersive-control-panel-system-settings-app-930969b84b40
https://medium.com/@boutnaru/the-windows-process-journey-consent-exe-consent-ui-for-administrative-applications-d8e6976e8e40
https://medium.com/@boutnaru/the-windows-process-journey-consent-exe-consent-ui-for-administrative-applications-d8e6976e8e40
https://lolbas-project.github.io/lolbas/Binaries/ComputerDefaults/

autofmt.exe (Auto File System Format Utility)
“autofmt.exe” (Auto File System Format Utility) is a PE binary located at
“%windir%\system32\autofmt.exe”. On 64-bit systems there is also a 32-bit version of the binary
located at “%windir%\SysWOW64\autofmt.exe”. This binary is used for formatting a
drive/partition when it is called from the “Windows Recovery Console”. By the way, we can’t
start “autofmt.exe” directly from the command line or the run dialog510 - as shown in the
screenshots below.

Thus, overall “autofmt.exe” automates the file format during reboots511. Also, the binary is
digitally signed by Microsoft. Based on the extracted strings for the binary we can learn about
the capabilities of the utility. Among those are: the ability to support formatting for different
filesystems (FAT/FAT32/extFAT/NTFS/UDF). By the way, we can also override the default
allocation unit size and specify if we want to support short filenames or not.

Lastly, there is also the ability to specify the size for the NTFS log and for disabling the NTFS
repair log (in this case the command “chkdsk /spotfix” won’t work) - more on that in future
writeups. Basically, we can think about “autofmt.exe” as a replacement of the old fdisk
command512.

512 https://www.quora.com/How-do-you-partition-a-drive-in-Windows-10-using-a-command-prompt
511 https://www.cs.toronto.edu/~simon/howto/win2kcommands.html
510 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/autofmt

148

https://www.quora.com/How-do-you-partition-a-drive-in-Windows-10-using-a-command-prompt
https://www.cs.toronto.edu/~simon/howto/win2kcommands.html
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/autofmt

Narrator.exe (Screen Reader)
“Narrator.exe” is a PE binary located at “%windir%\system32\Narrator.exe”. As opposed to
other Windows utilities, on 64-bit versions of Windows there is no parallel 32-bit version of the
binary. It is used as a screen-reader utility which is built in as part of the operating system513.

Overall, with the narrator utility we can use our PC without a mouse in order to complete
common tasks (very helpful for blind or low vision users). This is done by reading\interacting
with on the screen components (such as text and buttons). Examples for use cases are
reading\writing email, browsing the internet and working with documents514.

Lastly, we can configure the narrator's pitch, volume, speaking rate and even install
text-to-speech voices. Also, we can use the keyboard’s arrows or a braille display to navigate
through the different UI components\text on screen515 - as also described in the screenshot below.

515 https://www.tenforums.com/tutorials/88188-turn-off-narrator-windows-10-a.html
514 https://support.microsoft.com/en-us/windows/chapter-1-introducing-narrator-7fe8fd72-541f-4536-7658-bfc37ddaf9c6
513 https://social.cyware.com/news/attackers-abuse-narrator-utility-to-access-windows-systems-63b580fd

149

https://www.tenforums.com/tutorials/88188-turn-off-narrator-windows-10-a.html
https://support.microsoft.com/en-us/windows/chapter-1-introducing-narrator-7fe8fd72-541f-4536-7658-bfc37ddaf9c6
https://social.cyware.com/news/attackers-abuse-narrator-utility-to-access-windows-systems-63b580fd

netsh.exe (Network Command Shell)
“netstat.exe” (Network Command Shell) is a PE binary located at
“%windir%\system32\netsh.exe”. On 64-bit systems of Windows there is also a 32-bit version of
the binary located at “%windir%\SysWOW64\netsh.exe”. It is a command line utility which is
used for showing/modifying network configuration of the local/remote system. We can type the
commands directly at the “netsh shell” or leverage it as part of a batch file/script516.

Overall, among the different configuration realms that “netsh.exe” supports are: WLAN,
firewall, IPSec, DNS client, DHCP client, RPC and more - as shown in the screenshot below.
The “netsh” command provides similar functionality as the “Microsoft Management Console”
snap-ins517. The way in which “netsh.exe” interacts with other operating systems components is
by leveraging DLL files called “helpers”518.

Lastly, we can check out a reference implementation of “netsh.exe” as part of ReactOS519. For a
complete “netsh” command reference I suggest going over the Microsoft documentation520.

520 https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc754516(v=ws.10)
519 https://github.com/reactos/reactos/tree/master/base/applications/network/netsh
518 https://lolbas-project.github.io/lolbas/Binaries/Netsh/
517 https://learn.microsoft.com/en-us/windows-server/networking/technologies/netsh/netsh
516 https://learn.microsoft.com/en-us/windows-server/networking/technologies/netsh/netsh-contexts

150

https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc754516(v=ws.10)
https://github.com/reactos/reactos/tree/master/base/applications/network/netsh
https://lolbas-project.github.io/lolbas/Binaries/Netsh/
https://learn.microsoft.com/en-us/windows-server/networking/technologies/netsh/netsh
https://learn.microsoft.com/en-us/windows-server/networking/technologies/netsh/netsh-contexts

wpr.exe (Microsoft Windows Performance Recorder)
wpr.exe (Microsoft Windows Performance Recorder) is a PE binary located at
“%windir%\system32\wpr.exe”. As opposed to other Windows built-in utilities on 64-bit
versions of the operating systems there is no parallel (32-bit) version of the binary521. It is used in
order to record system events (extending ETW) which can be analyzed using the “Windows
Performance Analyzer”522 .

Overall, “wpr.exe” is a CLI (Command Line Interface) utility - as shown in the screenshot below.
It has been shipped since “Windows 8.1”. We can use it for recording events to a file or to a
memory buffer and also control the detail level of logging (light vs verbose). By using WPR IT
professionals can proactively identify and resolve performance issues523.

Lastly, there is also “wprui.exe” (more on it in a future writeup) which is similar to “wpr.exe”
(they are dependent on the same DLLs). However, the second has less features. WPR has
recording profiles which are lists of providers that are used for recording performance data.
Examples of built-in recording profiles are: “Heap Usage”, “GPU Activity”, “Handle Usage”,
“File I/O Activity”, “Registry Activity”, “Disk I/O Activity” and “Networking Activity”524.

524 https://learn.microsoft.com/en-us/windows-hardware/test/wpt/built-in-recording-profiles
523 https://learn.microsoft.com/en-us/windows-hardware/test/wpt/introduction-to-wpr
522 https://ss64.com/nt/wpr.html
521 https://learn.microsoft.com/en-us/windows-hardware/test/wpt/wpr-command-line-options

151

https://learn.microsoft.com/en-us/windows-hardware/test/wpt/built-in-recording-profiles
https://learn.microsoft.com/en-us/windows-hardware/test/wpt/introduction-to-wpr
https://ss64.com/nt/wpr.html
https://learn.microsoft.com/en-us/windows-hardware/test/wpt/wpr-command-line-options

regedit.exe (Registry Editor)
regedit.exe (Registry Editor) is a PE binary located at “%windir%\regedit.exe”. On 64-bit
versions of Windows there is also a 32-bit version located at
“%windir%\SysWOW64\regedit.exe”. Since Windows XP/Windows Server 2003 it is the
replacement of “regedt32.exe”. Thus, “regedit.exe” is called in case “regedt32.exe” is
executed525.

Overall, it is used the manage the “Registry” which is a hierarchical database used by the
Windows operating system to store configuration, settings and even data in some cases526. Also,
it can export\import\delete registry settings based on a “*.reg” file . Also, as opposed to
“reg.exe” the “regedit.exe” binary normally requests permission elevation527.

Lastly, it is important to know that although “regedit.exe” shows information such as the
permissions of a hive\key\subkey it does not expose all the metadata such as last modification
times528. For a reference implementation of “regedit.exe” we can checkout the source code of
ReactOS529.

529 https://github.com/reactos/reactos/tree/master/base/applications/regedit
528 https://en.wikipedia.org/wiki/Windows_Registry
527 https://ss64.com/nt/regedit.html
526 https://medium.com/@boutnaru/the-windows-concept-journey-registry-0767e79387a9
525 https://medium.com/@boutnaru/the-windows-process-journey-regedt32-exe-registry-editor-utility-21a372f65615

152

https://github.com/reactos/reactos/tree/master/base/applications/regedit
https://en.wikipedia.org/wiki/Windows_Registry
https://ss64.com/nt/regedit.html
https://medium.com/@boutnaru/the-windows-concept-journey-registry-0767e79387a9
https://medium.com/@boutnaru/the-windows-process-journey-regedt32-exe-registry-editor-utility-21a372f65615

fltMC.exe (Filter Manager Control Program)
fltMC.exe (Filter Manager Control Program) is a PE binary located at
“%windir%\system32\fltMC.exe”. On 64-bit versions of Windows there is also a 32-bit version
of the binary located at “%windir%\SysWOW64\fltMC.exe”. It is used for managing
“MiniFilter” drivers (which can add value to or modify the behavior of a file system) - more on
that in future writeups. We can use it for: loading\unloading filter drivers, listing filter
information, listing all the instances\associated instances with a filter\volume (including network
ones) and attach\detach a filter from a volume530.

Overall, “fltMC.exe” requires administrator privileges due to the fact it can unload drivers. This
can also be leveraged for unloading drivers of security agents\products and thus bypassing
them531. By the way, the binary is digitally signed by Microsoft. Also, the binary is dependent on
“%windir%\system32\fltLib.dll” (Filter Library) which is itself signed by Microsoft.

Lastly, examples of such drivers are: “%windir%\system32\drivers\WdFilter.sys” (Microsoft
Antimalware File System Filter Driver) which is part of “Windows Defender”532 and
“%windir%\system32\drivers\luafv.sys” (LUA File Virtualization Filter Driver) which is
responsible for the “UAC File Virtualization”533- as shown in the screenshot below. For a
reference implementation of “fltMC.exe” we can check out the source code of ReactOS534.

534 https://github.com/reactos/reactos/tree/master/base/applications/fltmc
533 https://medium.com/@boutnaru/the-windows-security-journey-file-virtualization-fdeb68e7e174
532 https://medium.com/@boutnaru/the-windows-security-journey-windows-defender-antivirus-cf0c76a6802e
531 https://www.elastic.co/guide/en/security/current/potential-evasion-via-filter-manager.html
530 https://ss64.com/nt/fltmc.html

153

https://github.com/reactos/reactos/tree/master/base/applications/fltmc
https://medium.com/@boutnaru/the-windows-security-journey-file-virtualization-fdeb68e7e174
https://medium.com/@boutnaru/the-windows-security-journey-windows-defender-antivirus-cf0c76a6802e
https://www.elastic.co/guide/en/security/current/potential-evasion-via-filter-manager.html
https://ss64.com/nt/fltmc.html

format.com (Disk Format Utility)
format.com (Disk Format Utility) is a PE binary (although it has a “.com” extension) located at
“%windir%\system32\format.com”. On 64-bit versions of Windows there is also a 32-bit version
of the binary located at “%windir%\SysWOW64\format.com”. It is used for preparing a volume
(hard disk\usb stick\etc) for use by the operating system535.

Overall, when formatting a volume (for usage under Windows) we can select the type of
filesystem we want to use (FAT\FAT32\exFAT\NTFS\UDF\ReFS)536. By using “format.com” we
create a new root directory and a file system for a drive and is supported only for local one (not
over the network)537.

Lastly, “format.com” is available on all versions of “MS-DOS” and since and since Windows 95.
supports multiple options which can customize the format flow. Among those options are: setting
the cluster size, zeroing the sectors, specifying the default allocation size and more538 - as shown
in the screenshot below. For a reference implementation of “format.com” we can checkout the
source code of ReactOS539.

539 https://github.com/reactos/reactos/tree/master/base/system/format
538 https://www.computerhope.com/formathl.htm
537 https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/format
536 https://ss64.com/nt/format.html
535 https://docs.oracle.com/cd/E19683-01/817-2874/6migoia5c/index.html

154

https://github.com/reactos/reactos/tree/master/base/system/format
https://www.computerhope.com/formathl.htm
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/format
https://ss64.com/nt/format.html
https://docs.oracle.com/cd/E19683-01/817-2874/6migoia5c/index.html

runonce.exe (Run Once Wrapper)
“runonce.exe” is an executable aka the “Run Once Wrapper” (based on the description field of
the PE file), which is located at “%windir%\System32\runonce.exe”. On a 64 bit-system there is
also a 32-bit version located at “%windir%\SysWOW64\runonce.exe”. Also, the file is digitally
signed by Microsoft. It is used by applications as part of their installation process in order to
ensure that post installation some additional programs (like for configuration) will execute only
once540. By the way, the binary is digitally signed by Microsoft.

Overall, the “RunOnce” registry key allows code to execute once (due to the fact the
configuration is removed) when a user signs in to the system541. It can be when the first user logs
on to the system
(“HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunOnce”) or the
first time a specific user logs on after setting the configuration
(“HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\RunOnce”). The
HLKM one is relevant only when members of the administrator group log on after reboot542.

Lastly, the way it works is that “explorer.exe”543 starts “runonce.exe” which then executes the
relevant applications/programs that are configured as part of the “RunOnce” registry key - as
shown in the screenshot below (taken using Sysinternals' “Process Monitor”). For an
implementation reference of “runonce.exe” I suggest going over the one in ReacOS544.

544 https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/system/runonce
543 https://medium.com/@boutnaru/the-windows-process-journey-explorer-exe-windows-explorer-9a96bc79e183
542 https://medium.com/@boutnaru/the-windows-concept-journey-runonce-registry-key-06eedd56f218

541https://learn.microsoft.com/en-us/windows/security/threat-protection/use-windows-event-forwarding-to-assist-in-intrusion-dete
ction

540 https://community.spiceworks.com/topic/1236047-runonce-exe

155

https://github.com/reactos/reactos/tree/3fa57b8ff7fcee47b8e2ed869aecaf4515603f3f/base/system/runonce
https://medium.com/@boutnaru/the-windows-process-journey-explorer-exe-windows-explorer-9a96bc79e183
https://medium.com/@boutnaru/the-windows-concept-journey-runonce-registry-key-06eedd56f218
https://learn.microsoft.com/en-us/windows/security/threat-protection/use-windows-event-forwarding-to-assist-in-intrusion-detection
https://learn.microsoft.com/en-us/windows/security/threat-protection/use-windows-event-forwarding-to-assist-in-intrusion-detection
https://community.spiceworks.com/topic/1236047-runonce-exe

