
The Linux​
Concept Journey

Version 5.0
April-2025

By Dr. Shlomi Boutnaru

Created using Craiyon, AI Image Generator

https://www.craiyon.com/

Introduction..6
The Auxiliary Vector (AUXV)...7
command not found.. 8
Out-of-Memory Killer (OOM killer)..9
Why doesn’t “ltrace” work on new versions of Ubuntu?.. 10
Syscalls (System Calls)...11
vDSO (Virtual Dynamic Shared Object)... 12
Calling syscalls from Python..14
Syscalls’ Naming Rule: What if a syscall’s name starts with “f”?..15
Syscalls’ Naming Rule: What if a syscall’s name starts with “l”?.. 16
RCU (Read Copy Update)..17
cgroups (Control Groups)...19
Package Managers.. 20
What is an ELF (Executable and Linkable Format) ?... 21
The ELF (Executable and Linkable Format) Header...22
File System Hierarchy in Linux.. 23
/boot/config-$(uname-r).. 25
/proc/config.gz... 26
What is an inode?..27
Why is removing a file not dependent on the file’s permissions?.......................................28
VFS (Virtual File System).. 29
tmpfs (Temporary Filesystem)..30
ramfs (Random Access Memory Filesystem)... 31
Buddy Memory Allocation.. 32
DeviceTree..33
How can we recover a deleted executable of a running application?..................................34
Process Group...34
<Major:Minor> Numbers... 36
Monolithic Kernel...37
Loadable Kernel Module (LKM)..38
Builtin Kernel Modules..39
Signals..40
Real Time Signals.. 41
Memory Management - Introduction..42
Hard Link.. 43
Soft Link... 44
BusyBox... 45
Character Devices... 46
Block Devices.. 47
Null Device (/dev/null)... 48

Zero Device (/dev/zero)... 49
Loop Device... 50
Unnamed Pipe (Anonymous Pipe)...51
Processes & Threads.. 52
Why never trust only the source code? And verify the created binary (Compiler
Optimizations)..53
D-BUS (Desktop Bus)..54
GNU Toolchain... 56
KVM (Kernel-based Virtual Machine)... 57
Kconfig... 58
Makefile...59
Page Faults...60
Session...61
IPC Methods Between Kernel and User Space...62
Netlink...63
Unix Domain Sockets..64
IOCTL (Input/Output Control)... 65
dnotify (Directory Notification)...66
inotify (Inode Notification).. 67
Limitations When Using inofity (Inode Notification).. 68
fanotify (Inode Notification).. 69
fsnotify (File System Notification)..70
Xen Hypervisor.. 71
Xorg (X Windows System).. 72
Xfce (Desktop Environment)...73
Zombie Processes...74
Uninterruptible Process..75
Linux File Types...76
Regular File.. 77
Directory File..78
Link File (aka Symbolic Link)... 79
Socket File..80
Block Device File... 81
Character Device File.. 82
Pipe File (aka Named Pipe/FIFO)..83
/etc/nologin...84
/proc/kcore (Kernel ELF Core Dumper)... 85
Mem Device (/dev/mem)..86
Kmem Device (/dev/kmem)... 87
chroot (Change Root Directory)...88
Namespaces...89

PID namespace.. 90
UTS namespace...91
IPC namespace.. 92
Time namespace..93
Network namespace..94
Mount Namespace...95
User Namespace..97

Introduction
When starting to learn Linux I believe that they are basic concepts that everyone needs to know
about. Because of that I have decided to write a series of short writeups aimed at providing the
basic vocabulary and understanding for achieving that.

Overall, I wanted to create something that will improve the overall knowledge of Linux in
writeups that can be read in 1-3 mins. I hope you are going to enjoy the ride.

Lastly, you can follow me on twitter - @boutnaru (https://twitter.com/boutnaru). Also, you can
read my other writeups on medium - https://medium.com/@boutnaru. You can also find my other
free eBooks at https://TheLearningJourney.com.

Lets GO!!!!!!

https://twitter.com/boutnaru
https://medium.com/@boutnaru
https://thelearningjourney.com

The Auxiliary Vector (AUXV)
There are specific OS variables that a program would probably want to query such as the size of
a page (part of memory management - for a future writeup). So how can it be done?

When the OS executes a program it exposes information about the environment in a key-value
data store called “auxiliary vector” (in short auxv/AUXV). If we want to check which keys are
available we can go over1 (on older versions it was part of elf.h) and look for all the defines that
start with “AT_”.

Among the information that is included in AUXV we can find: the effective uid of the program,
the real uid of the program, the system page size, number of program headers (of the ELF - more
on that in the future), minimal stack size for signal delivery (and there is more).

If we want to see all the info of AUXV while running a program we can set the
LD_SHOW_AUXV environment variable to 1 and execute the requested program (see the
screenshot below, it was taken from JSLinux running Fedora 33 based on a riscv64 CPU2. We
can see that the name of the variable starts with “LD_”, it is because it is used/parsed by the
dynamic linker/loader (aka ld.so).

Thus, if we statically link our program (like using the -static flag on gcc) setting the variable
won’t print the values of AUXV. Anyhow, we can also access the values in AUXV using the
“unsigned long getauxval(unsigned long type)” library function3. A nice fact is that the auxiliary
vector is located next to the environment variables check the following illustration4.

4 https://static.lwn.net/images/2012/auxvec.png
3 https://man7.org/linux/man-pages/man3/getauxval.3.html
2 https://bellard.org/jslinux/
1 https://elixir.bootlin.com/linux/latest/source/include/uapi/linux/auxvec.h#L10

https://static.lwn.net/images/2012/auxvec.png
https://man7.org/linux/man-pages/man3/getauxval.3.html
https://bellard.org/jslinux/
https://elixir.bootlin.com/linux/latest/source/include/uapi/linux/auxvec.h#L10

command not found
Have you ever asked yourself what happens when you see “command not found” on bash? This
writeup is not going to talk about that and not about the flow which determines if a command is
found or not (that is a topic for a different write up ;-).

I am going to focus my discussion on what happens in an environment based on bash + Ubuntu
(version 22.04). I guess you at least once wrote “sl” instead of “ls” and you got a message
“Command 'sl' not found, but can be installed with: sudo apt install sl” - how did bash know that
there is such a package that could be installed? - as shown in the screenshot below

Overall, the magic happens with the python script “/usr/lib/command-not-found” which is
executed when a bash does not find a command - as shown in the screenshot below. This feature
is based on an sqlite database that has a connection between command and packages, it is sorted
in “/var/lib/command-not-found/commands.db”.

Lastly, there is a nice website https://command-not-found.com/ which allows you to search for a
command and get a list of different ways of installing it (for different Linux
distributions/Windows/MacOS/Docker/etc).

https://command-not-found.com/

Out-of-Memory Killer (OOM killer)
The Linux kernel has a mechanism called “out-of-memory killer” (aka OOM killer) which is
used to recover memory on a system. The OOM killer allows killing a single task (called also
oom victim) while that task will terminate in a reasonable time and thus free up memory.

When OOM killer does its job we can find indications about that by searching the logs (like
/var/log/messages and grepping for “Killed”). If you want to configure the “OOM killer”5.

It is important to understand that the OOM killer chooses between processes based on the
“oom_score”. If you want to see the value for a specific process we can just read
“/proc/[PID]/oom_score” - as shown in the screenshot below. If we want to alter the score we
can do it using “/proc/[PID]/oom_score_adj” - as shown also in the screenshot below. The valid
range is from 0 (never kill) to 1000 (always kill), the lower the value is the lower is the
probability the process will be killed6.

6 https://man7.org/linux/man-pages/man5/proc.5.html
5 https://www.oracle.com/technical-resources/articles/it-infrastructure/dev-oom-killer.html

https://man7.org/linux/man-pages/man5/proc.5.html
https://www.oracle.com/technical-resources/articles/it-infrastructure/dev-oom-killer.html

Why doesn’t “ltrace” work on new versions of
Ubuntu?
Many folks have asked me about that, so I have decided to write a short answer about it. Two
well known command line tools on Linux which can help with dynamic analysis are “strace” and
“ltrace”. “strace” allows tracing of system calls (“man 2 syscalls”) and signals (“man 7 signal”).
I am not going to focus on “strace” in this writeup, you can read more about it using “man
strace”. On the other hand, “ltrace” allows the tracing of dynamic library calls and signals
received by the traced process (“man 1 ltrace”). Moreover, it can also trace syscalls (like
“strace”) if you are using the “-S” flag.

If you have tried using “ltrace” in the new versions of Ubuntu you probably saw that the library
calls are not shown (you can verify it using “ltrace `which ls`”). In order to demonstrate that I
have created a small c program - as you can see in the screenshot below (“code.c”).

First, if we compile “code.c” and run it using “ltrace” we don’t get any information about a
library call (see in the screenshot below). Second, if we compile “code.c” with “-z lazy” we can
see when running the executable with “ltrace” we do get information about the library functions.
So what is the difference between the two?
“ltrace” (and “strace”) works by inserting a breakpoint7 in the PLT for the relevant symbol (that
is library function) we want to trace. So because by default the binaries are not compiled with
“lazy loading” of symbols they are resolved when the application starts and thus the breakpoints
set by “ltrace” are not triggered (and we don’t see any library calls in the output - as shown in the
screenshot below). Also, you can read more about the internals of “ltrace” here -
https://www.kernel.org/doc/ols/2007/ols2007v1-pages-41-52.pdf

7 https://medium.com/@boutnaru/have-you-ever-asked-yourself-how-breakpoints-work-c72dd8619538

https://www.kernel.org/doc/ols/2007/ols2007v1-pages-41-52.pdf
https://medium.com/@boutnaru/have-you-ever-asked-yourself-how-breakpoints-work-c72dd8619538

Syscalls (System Calls)
Syscalls (aka “System Calls”) are a fundamental interface between user-mode code and the
Linux kernel. Most of the user-mode developers are not invoking syscalls directly, they are using
wrappers as part of libraries (such as glibc). Those wrappers are very basic and mostly copy
arguments to the right registers, calling the syscall and setting “errno” based on the return value
from the system call. Today, there are more than 460 syscalls as part of Linux8. We can
checkout the syscall numbers for different CPUs (“x86-64” and “arm 32”, “arm 64” and “x86”)
as part of “Chromium OS Docs”9. For watching which syscalls are called by a binary we can use
“strace”10 - as shown in the screenshot below (taken using
https://copy.sh/v86/?profile=archlinux).

Overall, in order to implement a syscall as part of the Linux kernel source code the
“SYSCALL_DEFINEn” macro is used (where “n” is the number of arguments needed by the
syscall implementation like “SYSCALL_DEFINE3”). By the way, this macro is based on the
“SYSCALL_METADATA” and “SYSCALL_DEFINEx” macros11. We can see that as part of
“/include/linux/syscalls.h”12 - more on that in future writeups.

Lastly, the way in which arguments are passed to the kernel for a syscall is based on an ABI
(Application Binary Interface) per CPU architecture. The ABI is composed of: the relevant
instruction for calling the syscall, the register which holds the number of the syscall, register/s
which is going to hold the return value of the syscall, a register that can hold an error value and a
list of registers for passing the arguments (up to 7) for the syscall. Let us take as an example
“x86-64”: the instruction is “syscall”, “rax” holds the number of the syscall, “rax+rdx” holds the
return value and “rdi, rsi ,rdx, r10, r8 and r9” used for the arguments13.

13 https://man7.org/linux/man-pages/man2/syscall.2.html
12 https://elixir.bootlin.com/linux/v6.12.4/source/include/linux/syscalls.h#L216
11 https://lwn.net/Articles/604287/
10 https://man7.org/linux/man-pages/man1/strace.1.html
9 https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md
8 https://man7.org/linux/man-pages/man2/syscalls.2.html

https://copy.sh/v86/?profile=archlinux
https://man7.org/linux/man-pages/man2/syscall.2.html
https://elixir.bootlin.com/linux/v6.12.4/source/include/linux/syscalls.h#L216
https://lwn.net/Articles/604287/
https://man7.org/linux/man-pages/man1/strace.1.html
https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md
https://man7.org/linux/man-pages/man2/syscalls.2.html

vDSO (Virtual Dynamic Shared Object)
vDSO is a shared library that the kernel maps into the memory address space of every user-mode
application. It is not something that developers need to think about due to the fact it is used by
the C library14.

Overall, the reason for even having vDSO is the fact they are specific system calls that are used
frequently by user-mode applications.Due to the time/cost of the context-switching between
user-mode and kernel-mode in order to execute a syscall it might impact the overall performance
of an application.

Thus, vDSO provides “virtual syscalls” due to the need for optimizing system calls
implementations. The solution needed to not require libc to track CPU capabilities and or the
kernel version. Let us take for example x86, which has two ways of invoking a syscall: “int
0x80” or “sysenter”. The “sysenter” option is faster, due to the fact we don’t need to through the
IDT (Interrupt Descriptor Table). The problem is it is supported for CPUs newer than Pentium II
and for kernel versions greater than 2.615.

If you vDSO the implementation of the syscall interface is defined by the kernel in the following
manner. A set of CPU instructions formatted as ELF is mapped to the end of the user-mode
address space of all processes - as shown in the screenshot below. When libc needs to execute a
syscall it checks for the presence of vDSO and if it is relevant for the specific syscalls the
implementation in vDSO is going to be used - as shown in the screenshot below16.

Moreover, for the case of “virtual syscalls” (which are also part of vDSO) there is a frame
mapped as two different pages. One in kernel space which is static/”readable & writeable” and
the second one in user space which is marked as “read-only”. Two examples for that are the
syscalls “getpid()” (which is a static data example) and “gettimeofday()” (which is a dynamic
read-write example).

Also, as part of the kernel compilation process the vDSO code is compiled and linked. We can
most of the time find it using the following command “find arch/$ARCH/ -name '*vdso*.so*' -o
-name '*gate*.so*'”17
If we want to enable/disable vDSO we can set “/proc/sys/vm/vdso_enable” to 1/0 respectively18.
Lastly, a benchmark of different syscalls using different implementations is shown below.

18 https://talk.maemo.org/showthread.php?t=32696
17 https://manpages.ubuntu.com/manpages/xenial/man7/vdso.7.html
16 https://hackmd.io/@sysprog/linux-vdso
15 https://linux-kernel-labs.github.io/refs/heads/master/so2/lec2-syscalls.html
14 https://man7.org/linux/man-pages/man7/vdso.7.html

https://talk.maemo.org/showthread.php?t=32696
https://manpages.ubuntu.com/manpages/xenial/man7/vdso.7.html
https://hackmd.io/@sysprog/linux-vdso
https://linux-kernel-labs.github.io/refs/heads/master/so2/lec2-syscalls.html
https://man7.org/linux/man-pages/man7/vdso.7.html

Calling syscalls from Python
Have you ever wanted a quick way to call a syscall (even if it is not exposed by libc)? There is a
quick way of doing that using “ctypes” in Python.

We can do it using the “syscall” exported function by libc (check out ‘man 2 syscall’19 for more
information). By calling that function we can call any syscall by passing its number and
parameters.

How do we know what the number of the syscall is? We can just check
https://filippo.io/linux-syscall-table/. What about the parameters? We can just go the the source
code which is pointed in any entry of a syscall (from the previous link) or we can just use man
(using the following pattern - ‘man 2 {NameOfSyscall}’, for example ‘man 2 getpid’).

Let us see an example, we will use the syscall getpid(), which does not get any arguments. Also,
the number of the syscall is 39 (on x64 Linux). You can check the screenshot below for the full
example. By the way, the example was made with
https://www.tutorialspoint.com/linux_terminal_online.php and online Linux terminal (kernel
3.10).

19 https://man7.org/linux/man-pages/man2/syscall.2.html

https://filippo.io/linux-syscall-table/
https://www.tutorialspoint.com/linux_terminal_online.php
https://man7.org/linux/man-pages/man2/syscall.2.html

Syscalls’ Naming Rule: What if a syscall’s name
starts with “f”?
Due to the large number of syscalls, there are some naming rules used in order to help in
understanding the operation performed by each of them. Let me go over some of them to give
more clarity.

If we have a syscall “<syscall_name>” so we could also have “f<syscall_name>” which means
that “f<syscall_name>” does the same operation as “<syscall_name>” but on a file referenced by
an fd (file descriptor). Some examples are (“chown”, “fchown”) and (“stat”, “fstat”). It is
important to understand that not every syscall which starts with “f” is part of such a pair, look at
“fsync()” as an example, however in this case the prefix still denoting the input of the syscall is
an fd. There are also examples in which the “f” prefix does not even refer to an fd like in the case
of “fork()”, it is just part of the syscall name.

Syscalls’ Naming Rule: What if a syscall’s name
starts with “l”?
I want to talk about those syscalls starting with “l”. If we have a syscall “<syscall_name>” so we
could also have “l<syscall_name>” which means that “l<syscall_name>” does the same
operation as “<syscall_name>” but in case of a symbolic link given as input the information is
retrieved about the link itself and not the file that the link refers to (for example “getxattr” and
“lgetxattr”. Moreover, not every syscall that starts with “l” falls in this category (think about
“listen”).

I think the last rule is the most confusing one because there are cases in which the “l” prefix is
not part of the original name of the syscall and is not relevant to any type of links. Let us look at
“lseek”, the reason for having the prefix is to emphasize that the offset is given as long as
opposed to the old “seek” syscall.

RCU (Read Copy Update)
Because there are multiple kernel threads (check it out using ‘ps -ef | grep rcu` - the output of the
command is included in the screenshot at the end of the post) which are based on RCU (and
other parts of the kernel) . I have decided to write a short explanation about it.

RCU is a sync mechanism which avoids the use of locking primitives in case multiple execution
flows that read and write specific elements. Those elements are most of the times linked by
pointers and are part of a specific data structure such as: has tables, binary trees, linked lists and
more.

The main idea behind RCU is to break down the update phase into two different steps:
“reclamation” and “removal” - let’s detail those phases. In the “removal” phase we
remove/unlink/delete a reference to an element in a data structure (can be also in case of
replacing an element with a new one). That phase can be done concurrently with other readers. It
is safe due to the fact that modern CPUs ensure that readers will see the new or the old data but
not partially updated. In the “reclamation” step the goal is to free the element from the data
structure during the removal process. Because of that this step can disrupt a reader which
references that specific element. Thus, this step must start only after all readers don’t hold a
reference to the element we want to remove.

Due to the nature of the two steps an updater can finish the “removal” step immediately and
defer the “reclamation” for the time all the active during this phase will complete (it can be done
in various ways such as blocking or registering a callback).

RCU is used in cases where read performance is crucial but can bear the tradeoff of using more
memory/space. Let’s go over a sequence of an update to a data structure in place using RCU.
First, we just create a new data structure. Second, we copy the old data structure into the new one
(don’t forget to save the pointer to the old data structure). Third, alter the new/copied data
structure. Fourth, update the global pointer to reference the new data structure. Fifth, sleep until
the kernel is sure they are no more readers using the old data structure (called also grace period,
in Linux we can use synchronize_rcu()20.

In summary, RCU is probably the most common “lock-free” technique for shared data structures.
It is lock-free for any number of readers. There are implementations also for single-writer and
even multi-writers (However, it is out of scope for now). Of course, RCU also has problems and
it is not designed for cases in which there are update-only scenarios (it is better for “mostly-read”
and “few-writes”) - More about that in a future writeup.

20 https://elixir.bootlin.com/linux/latest/source/kernel/rcu/tree.c#L3796

https://elixir.bootlin.com/linux/latest/source/kernel/rcu/tree.c#L3796

cgroups (Control Groups)
“Control Groups” (aka cgroups) is a Linux kernel feature that organizes processes into
hierarchical groups. Based on those groups we can limit and monitor different types of OS
resources. Among those resources are: disk I/O usage , network usage, memory usage, CPU
usage and more (https://man7.org/linux/man-pages/man7/cgroups.7.html). cgroups are one of the
building blocks used for creating containers (which include other stuff like namespaces,
capabilities and overlay filesystems).

The cgroups functionality has been merged into the Linux kernel since version 2.6.24 (released
in January 2008). Overall, cgroups provide the following features: resource limiting (as
explained above), prioritization (some process groups can have larger shares of resources),
control (freezing group of processes) and accounting21.

Moreover, there are two versions of cgroups. cgroups v1 was created by Paul Menage and Rohit
Seth. cgroups v2 was redesigned and rewritten by Tejun Heo22. The documentation for cgroups
v2 first appeared in the Linux kernel 4.5 release on March 201623.

I will write on the differences between the two versions and how to use them in the upcoming
writeups. A nice explanation regarding the concept of cgroups is shown in the image below24. By
the way, since kernel 4.19 OOM killer25 is aware of cgroups, which means the OS can kill a
cgroup as a single unit.

25 https://medium.com/@boutnaru/linux-out-of-memory-killer-oom-killer-bb2523da15fc
24 https://twitter.com/b0rk/status/1214341831049252870
23 https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/diff/Documentation/cgroup-v2.txt?id=v4.5&id2=v4.4
22 https://www.wikiwand.com/en/Cgroups
21 https://docs.kernel.org/admin-guide/cgroup-v1/cgroups.html

https://man7.org/linux/man-pages/man7/cgroups.7.html
https://medium.com/@boutnaru/linux-out-of-memory-killer-oom-killer-bb2523da15fc
https://twitter.com/b0rk/status/1214341831049252870
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/diff/Documentation/cgroup-v2.txt?id=v4.5&id2=v4.4
https://www.wikiwand.com/en/Cgroups
https://docs.kernel.org/admin-guide/cgroup-v1/cgroups.html

Package Managers
Package manager (aka “Package Management System”) is a set of software components which
are responsible for tracking what software artifacts (executables, scripts, shared libraries and
more). Packages are defined as a bundle of software artifacts that can be installed/removed as a
group (https://www.debian.org/doc/manuals/aptitude/pr01s02.en.html).

Thus, we can say that a package manager automates the installation/upgrading/removing of
computer programs from a system in a consistent manner. Moreover, package managers often
manage a database that includes the dependencies between the software artifacts and version
information in order to avoid conflicts (https://en.wikipedia.org/wiki/Package_manager).

Basically, there are different categories of package managers. The most common are: OS
package managers (like dpkg, apk, rpm, dnf, pacman and more - part are only frontends as we
will describe in the future) and runtime package managers focused on specific programming
languages (like maven, npm, PyPi, NuGet, Composer and more). Each package manager can also
have its own package file format (more on those in future writeups). Moreover, package
managers can have different front-ends CLI based or GUI based. Those package managers can
also support downloading software artifacts from different repositories
(https://devopedia.org/package-manager).

Overall, package managers can store different metadata for each package like: list of files,
version, authorship, licenses, targeted architecture and checksums. An overview of the package
management flow is shown in the diagram below
(https://developerexperience.io/articles/package-management).

What is an ELF (Executable and Linkable Format) ?
Every generic/standard operating system has a binary format for its user mode
executables/libraries, kernel code and more. Windows has PE (Portable Executable), OSX has
MachO and Linux has ELF. We are going to start with ELF (I promise to go over the others
also).

In Linux ELF among the others (but not limited to) for executables, kernel models, shared
libraries, core dumps and object files. Although, Linux does not mandates an extension for files
ELF files may have an extension of *.bin, *.elf, *.ko, *.so, *.mod, *.o, *.bin and more (it could
also be without an extension).

Moreover, today ELF is a common executable format for a variety of operating systems (and not
only Linux) like: QNX, Android, VxWorks, OpenBSD, NetBSD, FreeBSD, Fuchsia, BeOS.
Also, it is used in different platforms such as: Wii, Dreamcast and Playstation Portable.

ELF, might include 3 types of headers: ELF header (which is mandatory), program headers and
sections header . The appearance of the last two is based on the goal of the file: Is it for linking
only? Is it execution only? Both? (More on the difference between the two in the next chapters).
You can see the different layouts of ELF in the image below26.

In the next parts we will go over each header in more detail. By the way, a great source for more
information about ELF is man (“man 5 elf”).

26 https://i.stack.imgur.com/RMV0g.png

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://i.stack.imgur.com/RMV0g.png

The ELF (Executable and Linkable Format) Header
Now we are going to start with the ELF header. Total size of the header is 32 bytes. The header
starts with the magic “ELF” (0x7f 0x45 0x4c 0x46).

From the information contained in the header we can answer the following questions: Is the file
32 or 64 bit? Does the file store data in big or little endian? What is the ELF version? The type of
the file (executable,relocatable,shared library, etc)? What is the target CPU? What is the address
of the entry point? What is the size of the other headers (program/section)? - and more.

If we want to parse the header of a specific ELF file we can use the command “readelf” (we are
going to use it across all of the next parts to parse ELFs). In order to show the header of an ELF
file we can run “readelf -h {PATH_TO_ELF_FILE}”. In the image below we can see the ELF
header of “ls”. The image was taken from an online Arch Linux in a browser (copy.sh).

File System Hierarchy in Linux
As it turns out, there is a standard which is a reference that describes the conventions used by
Unix/Linux systems for the organization and layout of their filesystem. This standard was
created about 28 years ago (14 Feb 1994) and the last version (3.0) was published 7 years ago (3
Jun 2015). If you want to go over the specification for more details use the following link -
https://refspecs.linuxfoundation.org/fhs.shtml.

We are going to give a short description for each directory (a detailed description for some of
them will be in a dedicated write-up). We are going to list all the directories based on a
lexicographic order . All the examples that I am going to share are based on a VM running
Ubuntu 22.04.1 (below is a screenshot showing the directories for that VM). So let the fun begin
;-)

 “/”, is the root directory of the entire system (the start of everything).
“/bin”, basic command mostly binaries (there are also scripts like zgrep) that are needed for
every user. Examples are: ls, ip and id.
“/boot”, contains files needed for boot like the kernel (vmlinuz), initrd and boot loader
configuration (like for grub). It may also contain metadata information about the kernel build
process like the config that was used (A detailed writeup is going to be shared about “/boot” in
the future) .
“/dev”, device files, for now you should think about it as an interface to a device driver which is
located on a filesystem (more on that in the future). Examples are: /dev/null, /dev/zero and
/dev/random.
“/etc”, contains configuration about the system or an installed application. Examples are:
/etc/adduser.conf (configuration file for adduser and addgroup commands) and /etc/sudo.conf.
“/home”, is the default location of the users’ home directory (it can be modified in /etc/passwd
per user). The directory might contain personal settings of the user, saved files by the user and
more. Example is .bash_history which is a hidden file that contains the historical commands
entered by the user (while using the bash shell).
“/lib”, contains libraries needed by binaries mostly (but not limited to) in “/bin” and “/sbin”. On
64 bit systems we can also have “lib64”.
“/media”, used as a mount point for removable media (like CD-ROMs and USBs).
“/mnt”, can be used for temporary mounted filesystems.
“/opt”, should include applications installed by the user as add-ons (in reality not all of the
addons are installed there).
“/lost+found”, this directory holds files that have been deleted or lost during a file operation. It
means that we have an inode for those files, however we don’t have a filename on disk for them
(think about cases of kernel panic or an unplanned shutdown). It is handled by tools like fsck -
more on that is a future writeup.

https://refspecs.linuxfoundation.org/fhs.shtml

“/proc”, it is a pseudo filesystem which enables retrieval of information about kernel data
structures from user space using file operations, for example “ps” reads information for there to
build the process list. Due to the fact it is a crucial part of Linux I am going to dedicate an entire
writeup about it.
“/root”, it's the default home directory of the root account.
“/run”, it is used for runtime data like: running daemons, logged users and more. It should be
erased/initialized every time on reboot/boot.
“/sbin”, similar to “/bin” but contains system binaries like: lsmod, init (in Ubuntu by the way it
is a link to systemd) and dhclient.
“/srv”,contains information which is published by the system to the outside world using
FTP/web server/other.
“/sys”, also a pseudo filesystem (similar to /proc) which exports information about hardware
devices, device drivers and kernel subsystems. It can also allow configuration of different
subsystems (like tracing for ftrace). I will cover it separately in more detail in the near future.
“/tmp”, the goal of the directory is to contain temporary files. Most of the time the content is not
saved between reboots. Remember that there is also “/var/tmp”.
“/usr”, it is referred to by multiple names “User Programs” or “User System Resources”. It has
several subdirectories containing binaries, libs, doc files and also can contain source code.
Historically, it was meant to be read-only and shared between FHS-compliant hosts27. Due to the
nature of its complexity today and the large amount of files it contains we will go over it also in a
different writeup.
“/var”, aka variable files. It contains files which by design are going to change during the
normal operation of the system (think about spool files, logs and more). More on this directory in
the future.

It is important to note that those are not all the directories and subdirectories included on a clean
Linux installation, but the major ones I have decided to start with

27 https://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/usr.html

https://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/usr.html

/boot/config-$(uname-r)
“/boot/config-$(uname-r)” is a text file that contains a configuration (feature/options) that the
kernel was compiled with. The “uname -r” is replaced by the kernel release28. It is important to
understand that the file is only needed for the compilation phase and not for loading the kernel,
so it can be removed or even altered by a root user and therefore not reflect the specific
configuration that was used.Overall, any time one of the following “make menuconfig”/make
xconfig”, “make localconfig”, “make oldconfig”, “make XXX_defconfig” or other “make
XXXconfig” creates a “.config” file. This file is not erased (unless using “make mrproper”).
Also, many distributions are copying that file to “/boot”29.

The build system will read the configuration file and use it to generate the kernel by compiling
the relevant source code. By using the configuration file we can customize the Linux kernel to
your needs30. The configuration file is based on key values - as shown in the screenshot below31.
Using the configuration we can enable/disable features like sound/networking/USB support as
we can see with the “CONFIG_MMU=y” in the screenshot below32. Also, we can adjust a
specific value of features like the “CONFIG_ARCH_MMAP_RND_BITS_MIN=28”33.

Moreover, in case of kernel modules we can add/remove modules and decide if we want to
compile them into the kernel itself or as a separate “.ko” file. In case the setting is “y” it means to
compile inside the kernel, “m” means as a separate file and “n” means not to compile34. Thus, if
“CONFIG_DRM_TTM=m” then the “TTM memory manager subsystem” is going to be
compiled outside of the kernel35. If “ttm” is loaded it will be shown in the output of “lsmod”36.

36 https://man7.org/linux/man-pages/man8/lsmod.8.html
35 https://github.com/torvalds/linux/blob/master/drivers/gpu/drm/ttm/ttm_module.c
34 https://stackoverflow.com/questions/14587251/understanding-boot-config-file
33 https://elixir.bootlin.com/linux/v6.4.11/source/arch/x86/Kconfig#L322
32 https://elixir.bootlin.com/linux/v6.4.11/source/arch/um/Kconfig#L36
31 https://blog.csdn.net/weixin_43644245/article/details/121578858
30 https://linuxconfig.org/in-depth-howto-on-linux-kernel-configuration
29 https://unix.stackexchange.com/questions/123026/where-kernel-configuration-file-is-stored
28 https://linux.die.net/man/1/uname

https://man7.org/linux/man-pages/man8/lsmod.8.html
https://github.com/torvalds/linux/blob/master/drivers/gpu/drm/ttm/ttm_module.c
https://stackoverflow.com/questions/14587251/understanding-boot-config-file
https://elixir.bootlin.com/linux/v6.4.11/source/arch/x86/Kconfig#L322
https://elixir.bootlin.com/linux/v6.4.11/source/arch/um/Kconfig#L36
https://blog.csdn.net/weixin_43644245/article/details/121578858
https://linuxconfig.org/in-depth-howto-on-linux-kernel-configuration
https://unix.stackexchange.com/questions/123026/where-kernel-configuration-file-is-stored
https://linux.die.net/man/1/uname

/proc/config.gz
Since kernel version 2.6 the configuration options that were used to build the current running
kernel are exposed using procfs in the following path “/proc/config.gz”. The format of the
content is the same as the .config file which is copied by different distribution to “/boot”37.

Overall, as opposed to the ".config” file the data of “config.gz” is compressed. Due to that, if we
want to view it content we can use zcat38 or zgrep39 which allow reading/searching inside
compressed files. As shown in the screenshot below (taken from copy.sh).

Lastly, in order for “config.gz” to be supported and exported by “/proc” the kernel needs to be
build with “CONFIG_IKCONFIG_PROC” enabled40 - as also shown in the screenshot below.
We can also go overt the creation of the “/proc” entry41 and the function that returns the data
when reading that entry42.

42 https://elixir.bootlin.com/linux/v6.5/source/kernel/configs.c#L41
41 https://elixir.bootlin.com/linux/v6.5/source/kernel/configs.c#L60
40 https://elixir.bootlin.com/linux/v6.5/source/kernel/configs.c#L35
39 https://linux.die.net/man/1/zgrep
38 https://linux.die.net/man/1/zcat
37 https://medium.com/@boutnaru/the-linux-concept-journey-boot-config-uname-r-6a4dd16048c4

https://elixir.bootlin.com/linux/v6.5/source/kernel/configs.c#L41
https://elixir.bootlin.com/linux/v6.5/source/kernel/configs.c#L60
https://elixir.bootlin.com/linux/v6.5/source/kernel/configs.c#L35
https://linux.die.net/man/1/zgrep
https://linux.die.net/man/1/zcat
https://medium.com/@boutnaru/the-linux-concept-journey-boot-config-uname-r-6a4dd16048c4

What is an inode?
An inode (aka index node) is a data structure used by Unix/Linux like filesystems in order to
describe a filesystem object. Such an object could be a file or a directory. Every inode stores
pointers to the disk blocks locations of the object’s data and metadata43. An illustration of that is
shown below44.

Overall, the metadata contained in an inode is: file type (regular file/directory/symbolic
link/block special file/character special file/etc), permissions, owner id, group id, size, last
accessed time, last modified time, change time and number of hard links45.

By using inodes the filesystem tracks all files/directories saved on disk. Also, by using inodes we
can read any specific byte in the data of a file very effectively. We can see the number of total
inodes per mounted filesystem using the command “df -i”46. Also, we can see the inode of a
file/directory and other metadata of the file using the command “ls -i”47 or “stat”48. By the way,
the “stat” command can use different syscalls (depending on the filesystem and the specific
version) like “stat”49, “lstat”50 or “statx”51.

Lastly, you can check out “struct inode” in the source code of the Linux kernel52. Not all the
points/links are directly connected to the data blocks, however I will elaborate on that in a future
writeup.

52 https://elixir.bootlin.com/linux/v6.4.2/source/include/linux/fs.h#L612
51 https://man7.org/linux/man-pages/man2/statx.2.html
50 https://linux.die.net/man/2/lstat
49 https://linux.die.net/man/2/stat
48 https://linux.die.net/man/1/stat
47 https://man7.org/linux/man-pages/man1/ls.1.html
46 https://linux.die.net/man/1/df
45 https://www.stackscale.com/blog/inodes-linux/
44 https://www.sobyte.net/post/2022-05/linux-inode/
43 https://www.bluematador.com/blog/what-is-an-inode-and-what-are-they-used-for

https://elixir.bootlin.com/linux/v6.4.2/source/include/linux/fs.h#L612
https://man7.org/linux/man-pages/man2/statx.2.html
https://linux.die.net/man/2/lstat
https://linux.die.net/man/2/stat
https://linux.die.net/man/1/stat
https://man7.org/linux/man-pages/man1/ls.1.html
https://linux.die.net/man/1/df
https://www.stackscale.com/blog/inodes-linux/
https://www.sobyte.net/post/2022-05/linux-inode/
https://www.bluematador.com/blog/what-is-an-inode-and-what-are-they-used-for

Why is removing a file not dependent on the file’s
permissions?
Something which is not always understood correctly by Linux users is the fact that removing a
file is not dependent on the permissions of the file itself. As you can see in the screenshot below
even if a user has full permission (read+write+execute) it can’t remove a file. By the way,
removing a file is done by using the “unlink” syscall53 or the “unlinkat” syscall54.

The reason for that is because the data that states a file belongs to a directory is saved as part of
the directory itself. We can think about a directory as a “special file” whose data is the name and
the inode55 numbers of the files that are part of that specific directory.

Thus, if we add write permissions to the directory even if the user has no permissions to the file
(“chmod 000”) the file can be removed (from the directory) - as shown in the screenshot below.

55 https://medium.com/@boutnaru/linux-what-is-an-inode-7ba47a519940
54 https://linux.die.net/man/2/unlinkat
53 https://linux.die.net/man/2/unlink

https://medium.com/@boutnaru/linux-what-is-an-inode-7ba47a519940
https://linux.die.net/man/2/unlinkat
https://linux.die.net/man/2/unlink

VFS (Virtual File System)
VFS (Virtual File System, aka Virtual File Switch) is a software component of Linux which is
responsible for the filesystem interface between the user-mode and kernel mode. Using it allows
the kernel to provide an abstraction layer that makes implementation of different filesystems
very easy56.

Overall, VFS is masking the implementation details of a specific filesystem behind generic
system calls (open/read/write/close/etc), which are mostly exposed to user-mode application by
some wrappers in libc - as shown in the diagram below57.

Moreover, we can say that the main goal of VFS is to allow user-mode applications to access
different filesystems (think about NTFS, FAT, etc.) in the same way. There are four main objects
in VFS: superblock, dentries, inodes and files58.

Thus, “inode”59 is what the kernel uses to keep track of files. Because a file can have several
names there are “dentries” (“directory entries”) which represent pathnames. Also, due to the fact
a couple of processes can have the same file opened (for read/write) there is a “file” structure
that holds the information for each one (such as the cursor position). The “superblock” structure
holds data which is needed for performing actions on the filesystem - more details about all of
those and more (like mounting) are going to be published in the near future.

Lastly, there are also other relevant data structures that I will post on in the near future
(“filesystem”, “vfsmount”, “nameidata” and “address_space”).

59 https://medium.com/@boutnaru/linux-what-is-an-inode-7ba47a519940
58 https://www.win.tue.nl/~aeb/linux/lk/lk-8.html
57 https://www.starlab.io/blog/introduction-to-the-linux-virtual-filesystem-vfs-part-i-a-high-level-tour
56 https://www.kernel.org/doc/html/next/filesystems/vfs.html

https://medium.com/@boutnaru/linux-what-is-an-inode-7ba47a519940
https://www.win.tue.nl/~aeb/linux/lk/lk-8.html
https://www.starlab.io/blog/introduction-to-the-linux-virtual-filesystem-vfs-part-i-a-high-level-tour
https://www.kernel.org/doc/html/next/filesystems/vfs.html

tmpfs (Temporary Filesystem)

“tmpfs” is a filesystem that saves all of its files in virtual memory. By using it none of the files
created on it are saved to the system’s hard drive. Thus, if we unmount a tmpfs mounting point
every file which is stored there is lost. tmpfs holds all of the data into the kernel internal caches60.
By the way, it used to be called “shm fs”61.

Moreover, tmpfs is able to swap space if needed (it can also leverage “Transparent Huge Pages”),
it will fill up until it reaches the maximum limit of the filesystem - as shown in the screenshot
below. tmpfs supports both POSIX ACLs and extended attributes62. Overall, if we want to use
tmpfs we can use the following command: “mount -t tmpfs tmpfs [LOCATION]”. We can also
set a size using “-o size=[REQUESTED_SIZE]” - as shown in the screenshot below.

Lastly, there are different directories which are based on “tmpfs” like: “/run” and “/dev/shm”
(more on them in future writeups). To add support for “tmpfs” we should enable
“CONFIG_TMPFS” when building the Linux kernel63. We can see the implementation as part of
the Linux’s kernel source code64.

64 https://elixir.bootlin.com/linux/v6.6-rc1/source/mm/shmem.c#L133
63 https://cateee.net/lkddb/web-lkddb/TMPFS.html
62 https://man7.org/linux/man-pages/man5/tmpfs.5.html
61 https://cateee.net/lkddb/web-lkddb/TMPFS.html
60 https://www.kernel.org/doc/html/latest/filesystems/tmpfs.html

https://elixir.bootlin.com/linux/v6.6-rc1/source/mm/shmem.c#L133
https://cateee.net/lkddb/web-lkddb/TMPFS.html
https://man7.org/linux/man-pages/man5/tmpfs.5.html
https://cateee.net/lkddb/web-lkddb/TMPFS.html
https://www.kernel.org/doc/html/latest/filesystems/tmpfs.html

ramfs (Random Access Memory Filesystem)

“ramfs” is a filesystem that exports the Linux caching mechanism (page cache/dentry cache) as a
dynamically resizable RAM based filesystem. The data is saved in RAM only and there is no
backing store for it65.

Thus, if we unmount a “ramfs” mounting point every file which is stored there is lost - as shown
in the screenshot below. By the way, the trick is that files written to “ramfs” allocate dentries and
page cache as usual, but because they are not written they are never marked as being available
for freeing66.

Moreover, with “ramfs” we can keep on writing until we fill-up the entire physical memory. Due
to that, it is recommended that only root users will be able to write to a mounting point which is
based on “ramfs”. The differences between “ramfs” and “tmpfs”67 is that “tmpfs” is limited in
size and can also be swapped68.

Lastly, we can go over the implementation of “ramfs” as part of Linux's kernel source code69.
There are two implementations, one in case of an MMU70 and one in case there is no MMU71. A
good example for using “ramfs” is “initramfs”.

​

71 https://elixir.bootlin.com/linux/v6.5.3/source/fs/ramfs/file-nommu.c
70 https://elixir.bootlin.com/linux/v6.5.3/source/fs/ramfs/file-mmu.c
69 https://elixir.bootlin.com/linux/v6.5.3/source/fs/ramfs
68 https://wiki.debian.org/ramfs
67 https://medium.com/@boutnaru/the-linux-concept-journey-tmpfs-temporary-filesystem-886b61a545a0
66 https://lwn.net/Articles/157676/
65 https://docs.kernel.org/filesystems/ramfs-rootfs-initramfs.html

https://elixir.bootlin.com/linux/v6.5.3/source/fs/ramfs/file-nommu.c
https://elixir.bootlin.com/linux/v6.5.3/source/fs/ramfs/file-mmu.c
https://elixir.bootlin.com/linux/v6.5.3/source/fs/ramfs
https://wiki.debian.org/ramfs
https://medium.com/@boutnaru/the-linux-concept-journey-tmpfs-temporary-filesystem-886b61a545a0
https://lwn.net/Articles/157676/
https://docs.kernel.org/filesystems/ramfs-rootfs-initramfs.html

Buddy Memory Allocation

Basically, “buddy system” is a memory allocation algorithm. It works by dividing memory into
blocks of a fixed size. Each block of allocated memory is a power of two in size. Every memory
block in this system has an “order” (an integer ranging from 0 to a specified upper limit). The
size of a block of order n is proportional to 2n, so that the blocks are exactly twice the size of
blocks that are one order lower72

Thus, when a request for memory is made, the algorithm finds the smallest available block of
memory (that is sufficient to satisfy the request). If the block is larger than the requested size, it
is split into two smaller blocks of equal size (aka “buddies”). One of them is marked as free and
the second one as allocated. The algorithm then continues recursively until it finds the exact size
of the requested memory or a block that is the smallest possible size73.

Moreover, the advantages of such a system is that it is easy to implement and can handle a wide
range of memory sizes. The disadvantages are that it can lead to memory fragmentation and is
inefficient for allocating small amounts of memory. By the way, when the used “buddy” is freed,
if it's also free they can be merged together - a diagram of such relationship is shown below74.
Lastly, the Linux implementation of the “buddy system” is a little different than what is
described here, I am going to elaborate about it in a detected writeup.

74 https://www.expertsmind.com/questions/describe-the-buddy-system-of-memory-allocation-3019462.aspx
73 https://www.geeksforgeeks.org/operating-system-allocating-kernel-memory-buddy-system-slab-system/
72 https://en.wikipedia.org/wiki/Buddy_memory_allocation

https://www.expertsmind.com/questions/describe-the-buddy-system-of-memory-allocation-3019462.aspx
https://www.geeksforgeeks.org/operating-system-allocating-kernel-memory-buddy-system-slab-system/
https://en.wikipedia.org/wiki/Buddy_memory_allocation

DeviceTree
Overall, a “Device Tree” is a mechanism for describing non-discoverable hardware. In the past
this type of information was hard-coded as part of the source code (and later part of the
binary/firmware). So we can say a “DeviceTree” is a data structure for describing hardware. By
the way, there is a specification for that called “The Devicetree Specification”75.

Moreover, “DeviceTree” allows the kernel to manage different components such as CPU,
memory, buses and other. The specification detailed above contains the data format used, which
is internally a tree of named nodes and properties (key-value based). Device trees can be in
binary format (“*.dtb”) or text based (“*.dts”) for easing the management and editing76. The
“*.dtb” files are loaded by the bootloader and passed to the kernel - as shown in the diagram
below77.

Thus, we can find in the Linux kernel source code “*.dts” files in the directories of some of the
architectures, with the following pattern “/arch/[ARCHITECTURE/boot/dts”. Two examples are
“arm64”78 and “nios2”79. In order to transform “*.dts” files to “*.tdb” we can use the “dtc”
which is the “Device Tree Compiler”80. We can also go over the Makefiles responsible for that if
we want81.
Lastly, there are also “.dtsi” files that include files (like we have in c/c++). We can use also
YAML as the format of “*.dts” files in order to describe the different hardware components82.

82 https://www.konsulko.com/yaml-and-device-tree
81 https://elixir.bootlin.com/linux/v6.5.4/source/arch/arm64/boot/dts/Makefile
80 https://manpages.ubuntu.com/manpages/xenial/man1/dtc.1.html
79 https://elixir.bootlin.com/linux/v6.5.4/source/arch/nios2/boot/dts
78 https://elixir.bootlin.com/linux/v6.5.4/source/arch/arm64/boot/dts
77 https://vocal.com/resources/development/what-is-linux-device-tree/
76 https://en.wikipedia.org/wiki/Devicetree
75 https://www.devicetree.org/specifications/

https://www.konsulko.com/yaml-and-device-tree
https://elixir.bootlin.com/linux/v6.5.4/source/arch/arm64/boot/dts/Makefile
https://manpages.ubuntu.com/manpages/xenial/man1/dtc.1.html
https://elixir.bootlin.com/linux/v6.5.4/source/arch/nios2/boot/dts
https://elixir.bootlin.com/linux/v6.5.4/source/arch/arm64/boot/dts
https://vocal.com/resources/development/what-is-linux-device-tree/
https://en.wikipedia.org/wiki/Devicetree
https://www.devicetree.org/specifications/

How can we recover a deleted executable of a
running application?

In contrast to what you may think in case an executable file is deleted there are cases in which
we can recover it very easily. One of them is in case there is at least one instance of an
application running which is based on that executable.

Moreover, if the file is deleted we will see an indication for that in “/proc/[PID]/maps”, the string
pattern “(deleted)” is added in that case - as shown in the screenshot below. Thus, we can recover
the file by copying it from the location “/proc/[PID]/exe” - as also shown in the screenshot
below.

Lastly, this can be used for forensics/security purposes or just in case we deleted the executable
by mistake (just remember not to stop/kill the application). By the way, we can use a similar trick
for other files which are not the main image/executable (but that is for future writeups).

Process Group

Overall, a “Process Group” is a collection of processes which can be managed/handled together
by the operating system (one example of that is signal management). Each “Process Group” has
an identifier (PGID) and a “leader” which is the process that has created it. The PGID is equal to
the PID of the group leader83.

Moreover, we can use getpgid/getpgrp to get PGID or setpgid/setpgrp to set it84. The
setgrp/getgrp is a System-V API which setpgid/getpgid is the POSIX API85. The POSIX one is
the preferred one. Thus, if we check grep.app we can see that “setgpid”86 has more than 29 times
more results than “setpgrp”87.

Lastly, any time we execute a command in a shell or a pipeline of commands we create a
“Process Group” (it is sometimes called a job in the shell). As we can see in the screenshot
below the number of the “Process Group” changes for each execution, and for the last one it gets
incremented by one only even though we execute 5 processes (cause it is the same pipeline).

87 https://grep.app/search?q=%20setpgrp%28
86 https://grep.app/search?q=%20setpgid%28
85 https://unix.stackexchange.com/questions/404054/how-is-a-process-group-id-set
84 https://man7.org/linux/man-pages/man2/setpgid.2.html
83 https://biriukov.dev/docs/fd-pipe-session-terminal/3-process-groups-jobs-and-sessions/

https://grep.app/search?q=%20setpgrp%28
https://grep.app/search?q=%20setpgid%28
https://unix.stackexchange.com/questions/404054/how-is-a-process-group-id-set
https://man7.org/linux/man-pages/man2/setpgid.2.html
https://biriukov.dev/docs/fd-pipe-session-terminal/3-process-groups-jobs-and-sessions/

<Major:Minor> Numbers

In the Linux kernel devices (character/block device) are represented as a pair of numbers
(<major>:<minor>). There are some major/minor numbers which are reserved while others are
assigned dynamically. A major number can be shared between multiple device drivers88.

Overall, device files are located in “/dev” and they allow accessing the device from user-mode.
Those files are “connected” to the device using the major and minor number - as shown in the
diagram below on the left side89. We can see them using “ls -l” - as shown in the shell output in
the screenshot below (taken from copy.sh). The major number identifies the drivers associated
with the device, while the minor number is used only by the driver which gets the number
without the kernel using it90.

Moreover, the kernel code that can assign the name and the major number for a specific device
char device can use the “register_chrdev” function91. In case of a block device can use the macro
“register_blkdev”92.

Lastly, we can use the “mknod”93 command to create a block/char device file by providing a
name, major and minor numbers. We can also list the major numbers of the currently registered
devices with their names94 - as shown in the output of the screenshot below.

94 https://man7.org/linux/man-pages/man5/procfs.5.html
93 https://man7.org/linux/man-pages/man1/mknod.1.html
92 https://elixir.bootlin.com/linux/v6.6.1/source/include/linux/blkdev.h#L809
91 https://elixir.bootlin.com/linux/v6.6.1/source/include/linux/fs.h#L2535
90 https://www.oreilly.com/library/view/linux-device-drivers/0596000081/ch03s02.html
89 https://www.ibm.com/docs/en/linuxonibm/com.ibm.linux.z.ufdd/lxnode.jpg
88 https://www.ibm.com/docs/en/linux-on-systems?topic=hdaa-device-nodes-numbers

https://man7.org/linux/man-pages/man5/procfs.5.html
https://man7.org/linux/man-pages/man1/mknod.1.html
https://elixir.bootlin.com/linux/v6.6.1/source/include/linux/blkdev.h#L809
https://elixir.bootlin.com/linux/v6.6.1/source/include/linux/fs.h#L2535
https://www.oreilly.com/library/view/linux-device-drivers/0596000081/ch03s02.html
https://www.ibm.com/docs/en/linuxonibm/com.ibm.linux.z.ufdd/lxnode.jpg
https://www.ibm.com/docs/en/linux-on-systems?topic=hdaa-device-nodes-numbers

Monolithic Kernel

Monolithic kernel is an operating system architecture in which the entire OS code is executed in
kernel mode. Examples of operating systems which use this design are: Linux, BSD, SunOS,
AIX, MS-DOS, OpenVMS, HP-UX, TempleOS, z/TPF, XTS-400, Solaris, FreeBSD and
MULTICS95.

Thus, the kernel provides CPU scheduling, file management, memory management, IPC and
more (as opposed to microkernel) - as shown in the diagram below. There are a couple of
advantages when using this design like: we can use a single static binary for the kernel, we can
access all the capabilities of the kernel using system calls and we can get a single execution flow
in a single address space96.

Moreover, probably the biggest disadvantage of a monolithic kernel design is that in case of a
service failure the entire system fails. A monolithic kernel can be extended (without
recompilation and linking) only if it is modular. Linux it is done using loadable kernel modules,
the support for that is defined by enabling “CONFIG_MODULES” which compiling the
kernel97. Lastly, in kernel version 6.7.4 “CONFIG_MODULES” is referenced in 158 files across
the kernel source code files98.

98 https://elixir.bootlin.com/linux/latest/A/ident/CONFIG_MODULES
97 https://elixir.bootlin.com/linux/latest/source/Makefile#L1106
96 https://www.geeksforgeeks.org/monolithic-kernel-and-key-differences-from-microkernel/
95 https://en.wikipedia.org/wiki/Monolithic_kernel

https://elixir.bootlin.com/linux/latest/A/ident/CONFIG_MODULES
https://elixir.bootlin.com/linux/latest/source/Makefile#L1106
https://www.geeksforgeeks.org/monolithic-kernel-and-key-differences-from-microkernel/
https://en.wikipedia.org/wiki/Monolithic_kernel

Loadable Kernel Module (LKM)
A loadable kernel module (LKM) allows us to add code to the Linux kernel without the need of
recompiling and linking the kernel binary. This is used for different use cases such as (but not
limited to) filesystem drivers and device drivers99.

Overall, when compiling the Linux kernel we can decide if we want to incorporate a specific
kernel module as part of the kernel itself (also called built-in kernel modules - more details on
them in future writeups) or as a separate “*.ko” (kernel object) file. In case the kernel is already
compiled we only have the option of creating a kernel object file which can be later loaded by
using the “insmod” utility100.

Moreover, a kernel object file has the same type as an ordinary object file (before it is linked and
can be executed in user mode) - as shown in the screenshot below. This type is called relocatable
and is defined as “ET_REL”101.

Lastly, we can dynamically check the list of the actively loaded kernel modules using the
“lsmod”102 utility - as shown in the screenshot below. “lsmod” basically parses
“/proc/modules”103.

103 https://man7.org/linux/man-pages/man5/proc.5.html
102 https://man7.org/linux/man-pages/man8/lsmod.8.html
101 https://man7.org/linux/man-pages/man5/elf.5.html
100 https://man7.org/linux/man-pages/man8/insmod.8.html
99 https://tldp.org/HOWTO/Module-HOWTO/x73.html

https://man7.org/linux/man-pages/man5/proc.5.html
https://man7.org/linux/man-pages/man8/lsmod.8.html
https://man7.org/linux/man-pages/man5/elf.5.html
https://man7.org/linux/man-pages/man8/insmod.8.html
https://tldp.org/HOWTO/Module-HOWTO/x73.html

Builtin Kernel Modules

In general, we can compile a kernel module104 as a separate “*.ko” file or include it as part of the
kernel itself. If the kernel module is included as part of the kernel’s image it is referred to as a
builtin kernel module.

Overall, we can check this configuration regarding our compiled kernel by leveraging
“/proc/config.gz”105 or “/boot/config-$(uname-r)”106 in case they exist. If there are built-in kernel
modules compiled into the kernel, it is not sufficient to use “lsmod” for identifying them and we
need to use other techniques like searching for specific symbols in “/proc/kallsyms”107 or using
“modinfo”108 - as shown in the screenshot below.

Lastly, “built-in kernel modules” can’t be unloaded as opposed to “loadable kernel modules”.
However, we can be sure that they are loaded and we don’t need to take care of additional files
which are needed as in the case of “loadable kernel modules”109. Due to that (and more),
“built-in kernel modules” are great to ensure essential functionality that must be available at all
times110.

110 https://shape.host/resources/kernel-modules-vs-built-in-making-the-right-choice
109 https://stackoverflow.com/questions/22929065/difference-between-linux-loadable-and-built-in-modules
108 https://linux.die.net/man/8/modinfo
107 https://www.unix.com/man-page/redhat/8/kallsyms/
106 https://medium.com/@boutnaru/the-linux-concept-journey-boot-config-uname-r-6a4dd16048c4
105 https://medium.com/@boutnaru/the-linux-concept-journey-proc-config-gz-34c4086e0207
104 https://medium.com/@boutnaru/the-linux-concept-journey-loadable-kernel-module-lkm-5eaa4db346a1

https://shape.host/resources/kernel-modules-vs-built-in-making-the-right-choice
https://stackoverflow.com/questions/22929065/difference-between-linux-loadable-and-built-in-modules
https://linux.die.net/man/8/modinfo
https://www.unix.com/man-page/redhat/8/kallsyms/
https://medium.com/@boutnaru/the-linux-concept-journey-boot-config-uname-r-6a4dd16048c4
https://medium.com/@boutnaru/the-linux-concept-journey-proc-config-gz-34c4086e0207
https://medium.com/@boutnaru/the-linux-concept-journey-loadable-kernel-module-lkm-5eaa4db346a1

Signals

Signals are asynchronous events sent to a task (process), signals are numbered and their names in
Linux start with “SIG” . A couple of examples are: “SIGINT” (generated when Control+C is
pressed), “SIGALARM” (generated when the timer set by an alarm is fired), “SIGSTOP” (tells
Linux to pause a process execution), “SIGCONT” (tells Linux to resume the execution of a
process), “SIGSEGV” (generated in case of a segmentation fault) and “SIGKILL” (when sent to
a process causes it to be terminated). When a signal occurs one of three things can happen: the
signal is ignored, the signal is caught and handled using a registered function and letting the
default action of the signal to happen111.

Moreover, the default action could be: ignore, terminate, terminate and core dump, stop/pause
the process or resume the stop/paused process (they are also called “Signal Dispositions”.
Signals can be used as an IPC (Inter Process Communication) mechanism. In case we want to
alter the disposition of a signal we can use the “signal”112 syscall or the “sigcation”113 syscall -
the first is the preferred way.

Overall, for sending a signal by using its PID we can use the “kill”114 system call. We can also
use the “pidfd_send_signal” syscall for sending a signal by using a PID file descriptor115. In
order to send a signal to a specific thread of a process we can use the “tgkill”116 syscall. For
more syscalls/library calls related to signals I suggest going over the signal man page117.

Lastly, when a signal is received the relevant signal handler is called - as shown below118. The
number representing a signal ranges from 1-31, there are also “real time signals” which range
from 34-64119. For further information I suggest going over the relevant source code as part of
the Linux kernel120.

120 https://elixir.bootlin.com/linux/v6.7/source/kernel/signal.c
119 https://www-uxsup.csx.cam.ac.uk/courses/moved.Building/signals.pdf
118 https://devopedia.org/linux-signals
117 https://man7.org/linux/man-pages/man7/signal.7.html
116 https://man7.org/linux/man-pages/man2/tgkill.2.html
115 https://man7.org/linux/man-pages/man2/pidfd_send_signal.2.html
114 https://man7.org/linux/man-pages/man2/kill.2.html
113 https://man7.org/linux/man-pages/man2/sigaction.2.html
112 https://man7.org/linux/man-pages/man2/signal.2.html
111 https://faculty.cs.niu.edu/~hutchins/csci480/signals.htm

https://elixir.bootlin.com/linux/v6.7/source/kernel/signal.c
https://www-uxsup.csx.cam.ac.uk/courses/moved.Building/signals.pdf
https://devopedia.org/linux-signals
https://man7.org/linux/man-pages/man7/signal.7.html
https://man7.org/linux/man-pages/man2/tgkill.2.html
https://man7.org/linux/man-pages/man2/pidfd_send_signal.2.html
https://man7.org/linux/man-pages/man2/kill.2.html
https://man7.org/linux/man-pages/man2/sigaction.2.html
https://man7.org/linux/man-pages/man2/signal.2.html
https://faculty.cs.niu.edu/~hutchins/csci480/signals.htm

Real Time Signals

In general, “Real Time Signals” (aka realtime signals or rtsignals) are similar to normal/original
signals121 in the sense they have signal numbers and can be dealt with using the original signal
functions. Since kernel 2.2, Linux started supporting real-time signals; their range is defined
using the SIGRTMIN and SIGRTMAX macros. Linux supports 33-different real-time signals
(ranging from 32-64). However, the range of available real-time signals varies according to the
glibc threading implementation (this variation can occur at run time according to the available
kernel and glibc), due to that programs should never refer them using hard-coded numbers122.

Overall, there are some differences between the original signals and real-time signals. Among
them is the fact that real-time signals have multiple instances of individual real-time signals that
can be queued (as opposed to the original signals which are merged when sent to a process that
has a signal pending). Also, real-time signals can carry additional data with the signal number123.

Moreover, regarding the delivery priority lower number signals are given priority over higher
number signals. For Linux this is true across the types of all signals, due to that the original
signals have higher priority than all real-time signals. By the way, POSIX says that priority of
real-time versus ordinary signals is unspecified, and only the real-time signals have a specified
priority relative to each other124.

Lastly, for handling real-time signals and receiving the additional data we need to use the
“sigaction” system call125 or library call126 and not “signal” system call127. For sending a signal
we should use the “sigqueue” syscall128 or the “sigqueue” library call129 and not the “kill”
syscall130 or “the kill” library131 - as shown below132.

132 https://www.softprayog.in/programming/posix-real-time-signals-in-linux
131 https://linux.die.net/man/3/kill
130 https://linux.die.net/man/2/kill
129 https://linux.die.net/man/3/sigqueue
128 https://linux.die.net/man/2/sigqueue
127 https://man7.org/linux/man-pages/man2/signal.2.html
126 https://linux.die.net/man/3/sigaction
125 https://linux.die.net/man/2/sigaction
124 https://davmac.org/davpage/linux/rtsignals.html

123 https://www.nxp.com/docs/en/white-paper/CWLNXRTOSWP.pdf
122 https://man7.org/linux/man-pages/man7/signal.7.html
121 https://medium.com/@boutnaru/the-linux-concept-journey-signals-d1f37a9d2854

https://www.softprayog.in/programming/posix-real-time-signals-in-linux
https://linux.die.net/man/3/kill
https://linux.die.net/man/2/kill
https://linux.die.net/man/3/sigqueue
https://linux.die.net/man/2/sigqueue
https://man7.org/linux/man-pages/man2/signal.2.html
https://linux.die.net/man/3/sigaction
https://linux.die.net/man/2/sigaction
https://davmac.org/davpage/linux/rtsignals.html
https://www.nxp.com/docs/en/white-paper/CWLNXRTOSWP.pdf
https://man7.org/linux/man-pages/man7/signal.7.html
https://medium.com/@boutnaru/the-linux-concept-journey-signals-d1f37a9d2854

Memory Management - Introduction
Linux’s memory management subsystem is surprisingly responsible for managing the system
held in the system. It does that by using several components: virtual memory and demand
paging, userspace memory allocator and an allocator for kernel structures.

Virtual memory is a memory management technique used to create an illusion for a running
program that it has the entire memory address space only for itself with no need to coordinate the
address used with other running programs. Two basic concepts we should get to know are frames
(sometimes called physical pages/page frames) and pages (sometimes called virtual pages).

First, we are going to divide physical memory (total available memory the system has, we can
see it using “cat /proc/meminfo | grep -i memtotal”) into blocks with the same size. We call them
“frames”, their size is a power of 2 (for now we are going to use the magic number of 4K more
on that in future writeup). Second, we divide the virtual memory address space into blocks with
the same size called “pages”. The maximum range of the address space depends on the CPU and
the OS (more on that in a future writeup). The size of the “pages” is also a power of 2, for
simplicity the size of “pages” equals those of “frames”. We can see that size from AUXV133.

For those who know NAT/PAT (Network Address Translation/Port Address Translation) it is
similar to the process done by the memory management subsystem. We take a “Virtual Address”
which resides in a specific “page” and it is translated into a “Physical Address” which resides in
a specific “frame”. The component responsible for that is the MMU (Memory Management
Unit), for now we are going to talk about hardware based only MMUs (we will cover soft-MMU
in the future). The translation is based on tables created and managed by the OS (“page tables”)
and the MMU is responsible for using them for the translation and the enforcement of different
checks (defined by page bit-like validity) - see the illustration below134. In order to configure the
memory management subsystem we can use the “/proc/sys/vm” interface (for more information
about that I suggest reading “man proc”135).

135 https://man7.org/linux/man-pages/man5/proc.5.html
134 http://dysphoria.net/OperatingSystems1/4_paging.html
133 https://medium.com/@boutnaru/linux-the-auxiliary-vector-auxv-cba527871b50

https://man7.org/linux/man-pages/man5/proc.5.html
http://dysphoria.net/OperatingSystems1/4_paging.html
https://medium.com/@boutnaru/linux-the-auxiliary-vector-auxv-cba527871b50

Hard Link

As mentioned in previous writeup, an inode is data structure used by Unix/Linux like filesystems
in order to describe a filesystem object136. Thus, each hard link has the same inode value as the
original file it points to - as shown in the screenshot below. When removing a hard link it just
reduces the “link count” (think about it as a reference count), but it does not affect other links
(the file is removed only when the count reaches “0”). Each hard link has a different file name
and if the size of the content of one link changes then all the hard links file sizes are updated137.

Overall, we have a couple of limits regarding hard links which includes the fact we can create a
hard link only for regular files (not including special files or directories). Also, we can not use a
hard link to point to a file in a different filesystem138 - as shown in the screenshot below.

Lastly, we can use the “ln” command line utility in order to create hard links139 - as shown in the
screenshot below. It is based on the “link”/”linkat” system call which is described as “make a
new name for a file”140.

140 https://man7.org/linux/man-pages/man2/link.2.html
139 https://man7.org/linux/man-pages/man1/ln.1.html
138 https://www.redhat.com/sysadmin/linking-linux-explained
137 https://www.geeksforgeeks.org/soft-hard-links-unixlinux/
136 https://medium.com/@boutnaru/linux-what-is-an-inode-7ba47a519940

https://man7.org/linux/man-pages/man2/link.2.html
https://man7.org/linux/man-pages/man1/ln.1.html
https://www.redhat.com/sysadmin/linking-linux-explained
https://www.geeksforgeeks.org/soft-hard-links-unixlinux/
https://medium.com/@boutnaru/linux-what-is-an-inode-7ba47a519940

Soft Link

As opposed to a hard link141 which points to an inode, a soft link (aka symbolic link) points to
another directory/file by name. Thus, soft links do not have the limitation of hard links in the
sense of not being able to point to directories142. By the way, we can use the “ln” command with
the “-s” in order to create a soft link143 - as shown in the screenshot below.

Moreover, we can use soft links to point to a file/directory in a different file system, having a
different inode, different permissions and size. Because a soft link is not a mirror (as in the case
of a hard link) the size of the file are the number of bytes needed to hold the name of the
file/directory144. The name of the file/directory can be based on a relative/full path - as shown in
the screenshot below.

Lastly, soft links have their own limitations (we can’t have only pros ;-). In case the name of the
original file/directory (the target of the soft link) is changed it “breaks” the pointer/link - as
shown in the screenshot below. Also, changing the permissions of the original file/directory does
not affect the soft link. The creation of a soft link is based on the “link”/”linkat” system call
which is described as “make a new name for a file”145.

145 https://man7.org/linux/man-pages/man2/link.2.html
144 https://www.redhat.com/sysadmin/soft-links-linux
143 https://man7.org/linux/man-pages/man1/ln.1.html
142 https://kodekloud.com/blog/linux-create-and-manage-soft-links/
141 https://medium.com/@boutnaru/the-linux-concept-journey-hard-link-f3e9b3d6b8c4

https://man7.org/linux/man-pages/man2/link.2.html
https://www.redhat.com/sysadmin/soft-links-linux
https://man7.org/linux/man-pages/man1/ln.1.html
https://kodekloud.com/blog/linux-create-and-manage-soft-links/
https://medium.com/@boutnaru/the-linux-concept-journey-hard-link-f3e9b3d6b8c4

BusyBox

BusyBox sees itself as the “The Swiss Army Knife of Embedded Linux”. It is a software
component that combines tiny versions of many Unix utilities into a single binary. By doing so it
can replace most utilities like GNU shellutils and fileutils. It is important to know that BusyBox
has fewer options than the full-featured GNU utilities146.

Moreover, BusyBox supports about 400 commands such as: “ls”, “ln”, “mv”, “mkdir”, “more”
and “grep”. Also, it is an open source (GPL) project147. We can execute any command supported
by BusyBox in the following way: “busybox <command>” - as shown in the screenshot below.
The screenshot was taken from a “Buildroot Linux”148. We can download the source code of
BusyBox for the official BusyBox website149. There are also porting of BusyBox to other
operating systems like Android150.

Lastly, we can also execute BusyBox commands without calling the busybox executable directly.
This works due to the fact that for every command supported by BusyBox a symbolic link with
the name of the command is created. The symbolic link points to the BusyBox executable - as
shown in the screenshot below. This causes the “cmdline”, which holds the complete command
line for the process (unless it is a zombie process) to hold the name of the symbolic link and the
arguments passed151.

151 https://man7.org/linux/man-pages/man5/proc.5.html
150 https://github.com/meefik/busybox
149 https://busybox.net/downloads/
148 https://copy.sh/v86/?profile=buildroot
147 https://opensource.com/article/21/8/what-busybox
146 https://busybox.net/about.html

https://man7.org/linux/man-pages/man5/proc.5.html
https://github.com/meefik/busybox
https://busybox.net/downloads/
https://copy.sh/v86/?profile=buildroot
https://opensource.com/article/21/8/what-busybox
https://busybox.net/about.html

Character Devices

In Unix\Linux hardware devices are accessed using device files (located in “/dev”). A character
device is used in case of slow devices (like sound card/joystick/keyboard/serial ports), which
usually manage a small amount of data. Operations on those devices are performed sequentially
byte by byte152.

Moreover, as with every device also character devices have a major number and a minor
number153. We can think of the major number identifying the driver and the minor number
identifying each physical device handled by the driver. Thus, we can say we have four main
entities: the application, a character device file, a character device driver and a character device -
as shown in the diagram below154.

Lastly, in order to add a character device driver we need to register it with the kernel. This can be
done by leveraging the “register_chrdev” function which is part of the “include/linux/fs.h”
header file155. In the case of kernel version “6.9.7” there are 46 files which reference that
function156.

156 https://elixir.bootlin.com/linux/v6.9.7/A/ident/register_chrdev
155 https://elixir.bootlin.com/linux/v6.9.7/source/include/linux/fs.h#L2746
154 https://sysplay.in/blog/linux-device-drivers/2013/05/linux-character-drivers/
153 https://medium.com/@boutnaru/the-linux-concept-journey-major-minor-numbers-56abe372482e
152 https://linux-kernel-labs.github.io/refs/heads/master/labs/device_drivers.html

https://elixir.bootlin.com/linux/v6.9.7/A/ident/register_chrdev
https://elixir.bootlin.com/linux/v6.9.7/source/include/linux/fs.h#L2746
https://sysplay.in/blog/linux-device-drivers/2013/05/linux-character-drivers/
https://medium.com/@boutnaru/the-linux-concept-journey-major-minor-numbers-56abe372482e
https://linux-kernel-labs.github.io/refs/heads/master/labs/device_drivers.html

Block Devices

Block devices provide the ability to randomly access data which is organized in fixed-size
blocks. Examples of such devices are: RAM disks, CD-ROM drives and hard drives. The speed
of block devices is in general higher than those of character devices157. Another difference is that
a character device has a single current position. However, in the case of a block device we need
to be able to move to any random position for accessing/writing data158. We can see a comparison
(with examples) between character devices and block devices in the diagram below159.

Moreover, as with every device, block devices have a major number and a minor number160. We
can think of the major number identifying the driver and the minor number identifying each
physical device handled by the driver. Although there is a difference between block devices they
have some common abstractions like: data is typically buffered/cached on reads (an even writes
if supported) and data if mostly organized as files and directories for ease of use by the user161.

Lastly, in order to add a character device driver we need to register it with the kernel. This can be
done by leveraging the “register_blkdev” macro which is part of the “include/linux/fs.h” header
file162. In the case of kernel version “6.9.7” there are 33 files which reference that macro163.

163 https://elixir.bootlin.com/linux/v6.9.7/A/ident/register_blkdev
162 https://elixir.bootlin.com/linux/v6.9.7/source/include/linux/blkdev.h#L809
161 https://www.codingame.com/playgrounds/2135/linux-filesystems-101---block-devices/about-block-devices
160 https://medium.com/@boutnaru/the-linux-concept-journey-major-minor-numbers-56abe372482e
159 https://www.csltraining.com/block-device-vs-character-devices-in-linux-os/
158 https://linux-kernel-labs.github.io/refs/heads/master/labs/block_device_drivers.html
157 https://medium.com/@boutnaru/the-linux-concept-journey-character-devices-0c75aa70ceb2

https://elixir.bootlin.com/linux/v6.9.7/A/ident/register_blkdev
https://elixir.bootlin.com/linux/v6.9.7/source/include/linux/blkdev.h#L809
https://www.codingame.com/playgrounds/2135/linux-filesystems-101---block-devices/about-block-devices
https://medium.com/@boutnaru/the-linux-concept-journey-major-minor-numbers-56abe372482e
https://www.csltraining.com/block-device-vs-character-devices-in-linux-os/
https://linux-kernel-labs.github.io/refs/heads/master/labs/block_device_drivers.html
https://medium.com/@boutnaru/the-linux-concept-journey-character-devices-0c75aa70ceb2

Null Device (/dev/null)

The “Null Device” (/dev/null) is a character device164 used under Linux. This device ignores all
data written to but returns that the write operation has succeeded165 - as shown in the screenshot
below (taken using https://copy.sh/v86/?profile=archlinux). Due to its nature the null device it
has a special “lseek” function called “null_lseek” so we can use “fopen” on it with an append
flag166.

Overall, the null device has its own “file operations” struct aka “null_fops”167. From that
structure we can find the read function of the device “read_null” which returns “0” for all
input168. By default this device has a <1,3> as its <major,minor> number pair169 - as also shown
in the screenshot below.

Lastly, the null device is not unique only for Unix/Linux operating systems. We can find it on
Windows as “\Device\Null”, on DOS or CP/M as “\DEV\NUL”, on OS/2 as “nul”, on OpenVMS
as “NL:” and more. Due to its nature “/dev/null” is used for disposing of unwanted output
streams of a process or as an empty file for input streams. Because it is not a directory we can
use the “mv” utility with it170.

170 https://en.wikipedia.org/wiki/Null_device
169 https://medium.com/@boutnaru/the-linux-concept-journey-major-minor-numbers-56abe372482e
168 https://elixir.bootlin.com/linux/v6.12/source/drivers/char/mem.c#L430
167 https://elixir.bootlin.com/linux/v6.12/source/drivers/char/mem.c#L649
166 https://elixir.bootlin.com/linux/v6.12/source/drivers/char/mem.c#L566
165 https://elixir.bootlin.com/linux/v6.12/source/drivers/char/mem.c#L436
164 https://medium.com/@boutnaru/the-linux-concept-journey-character-devices-0c75aa70ceb2

https://copy.sh/v86/?profile=archlinux
https://en.wikipedia.org/wiki/Null_device
https://medium.com/@boutnaru/the-linux-concept-journey-major-minor-numbers-56abe372482e
https://elixir.bootlin.com/linux/v6.12/source/drivers/char/mem.c#L430
https://elixir.bootlin.com/linux/v6.12/source/drivers/char/mem.c#L649
https://elixir.bootlin.com/linux/v6.12/source/drivers/char/mem.c#L566
https://elixir.bootlin.com/linux/v6.12/source/drivers/char/mem.c#L436
https://medium.com/@boutnaru/the-linux-concept-journey-character-devices-0c75aa70ceb2

Zero Device (/dev/zero)

The “Zero Device” (/dev/zero) is a character device171 used under Linux. The goal of the device
is to provide null characters (ASCII code of 0x00) - as shown in the screenshot below (taken
using https://copy.sh/v86/?profile=archlinux). Due to its nature the zero device it has a special
“lseek” function called “null_lseek” so we can use “fopen” on it with an append flag172. This is
the same function for lseek as with with the “Null Device”173.

Overall, the zero device has its own “file operations” struct aka “zero_fops”174. From that
structure we can find the “read_iter” function of the device “read_iter_zero” which is responsible
for returning zeros175. By default this device has a <1,5> as its <major,minor> number pair176 - as
also shown in the screenshot below.

Lastly, as opposed to “/dev/null”177 we can use “/dev/zero” both as a source or destination in
different commands/utilities (while “/dev/null” can be only used as a sink for data). In case we
memory map “/dev/zero” it is like using anonymous memory178. This can be done by leveraging
the “mmap” syscall179 or the “mmap” library function180.

180 https://linux.die.net/man/3/mmap
179 https://man7.org/linux/man-pages/man2/mmap.2.html
178 https://en.wikipedia.org/wiki//dev/zero
177 https://medium.com/@boutnaru/the-linux-concept-journey-null-device-dev-null-b63a3c42fdb2
176 https://medium.com/@boutnaru/the-linux-concept-journey-major-minor-numbers-56abe372482e
175 https://elixir.bootlin.com/linux/v6.12/source/drivers/char/mem.c#L471
174 https://elixir.bootlin.com/linux/v6.12/source/drivers/char/mem.c#L668
173 https://elixir.bootlin.com/linux/v6.12/source/drivers/char/mem.c#L629
172 https://elixir.bootlin.com/linux/v6.12/source/drivers/char/mem.c#L566
171 https://medium.com/@boutnaru/the-linux-concept-journey-character-devices-0c75aa70ceb2

https://copy.sh/v86/?profile=archlinux
https://linux.die.net/man/3/mmap
https://man7.org/linux/man-pages/man2/mmap.2.html
https://en.wikipedia.org/wiki//dev/zero
https://medium.com/@boutnaru/the-linux-concept-journey-null-device-dev-null-b63a3c42fdb2
https://medium.com/@boutnaru/the-linux-concept-journey-major-minor-numbers-56abe372482e
https://elixir.bootlin.com/linux/v6.12/source/drivers/char/mem.c#L471
https://elixir.bootlin.com/linux/v6.12/source/drivers/char/mem.c#L668
https://elixir.bootlin.com/linux/v6.12/source/drivers/char/mem.c#L629
https://elixir.bootlin.com/linux/v6.12/source/drivers/char/mem.c#L566
https://medium.com/@boutnaru/the-linux-concept-journey-character-devices-0c75aa70ceb2

Loop Device

Under Linux (and other Unix based OSes) we can use a regular file as a block device. Thus, a
loop device (sometimes can also be called loopback although not a networking device) is a
virtual/pseudo device that allows us accessing the data in a regular file as a block device. The
device node of the pseudo-device is available under “/dev”. Because of that we can create a new
file system and mount it as with an ordinary block device181. In other Unix based OSes it called
in different name like vnd (vnode disk) on NetBSD/OpenBSD or lofi (loop file interface) on
Solaris/OpenSolaris182.

Overall, after associating a file with a loop device the OS treats that file as if it was a physical
disk. By default, loop devices are not persistent across reboots. We can add entries to specific
configuration files to make them persistent (think for example about “/etc/fstab”). Another
benefit is the ability to dynamically resize a loop device183.

Lastly, in order to associate loop devices with a regular file (and other operations like detaching,
resizing and more) we can leverage the “losetup” command line utility184 - as shown in the
screenshot below taken using “Arch Linux” from copy.sh185. For implementation details I suggest
going over the source code as part of the Linux kernel186.

186 https://elixir.bootlin.com/linux/v6.11.5/source/drivers/block/loop.c
185 https://copy.sh/v86/?profile=archlinux
184 https://man7.org/linux/man-pages/man8/losetup.8.html
183 https://www.lenovo.com/us/en/glossary/loop-device/
182 https://en.wikipedia.org/wiki/Loop_device
181 https://dzone.com/articles/loop-device-in-linux

https://elixir.bootlin.com/linux/v6.11.5/source/drivers/block/loop.c
https://copy.sh/v86/?profile=archlinux
https://man7.org/linux/man-pages/man8/losetup.8.html
https://www.lenovo.com/us/en/glossary/loop-device/?srsltid=AfmBOoonKo5km6Nqog0sv9fdT-07ugY76zzJHWsaMyEMbzEL5Ig2SHTi
https://en.wikipedia.org/wiki/Loop_device
https://dzone.com/articles/loop-device-in-linux

Unnamed Pipe (Anonymous Pipe)

In general a Linux pipe allows commands to send output of one program to a different one. Thus,
the term “Piping” means redirecting standard input/output/error of one process to another. In
order to create a pipe (unnamed pipe) we can use the “|” character. For example “Command-(i)”
| “Command-(i+1)....|..|”Command-(i+n)” - as shown in the screenshot below187.

Overall, the “unnamed pipe” that is created (like by the command shown above) can’t be
accessed from a different session. Those types of pipes are created temporarily and deleted after
the execution of the command. The pipe can be created using the pipe/pipe system call188.

Lastly, by using an unnamed pipe we get a unidirectionality of the stream. Also, each shell has its
own way of getting the status of each command in case of a pipeline, because by default only the
status of the last command is saved to “$?”. For example “bash” has the “$PIPESTATUS”
environment variable189.

189 https://www.baeldung.com/linux/anonymous-named-pipes
188 https://man7.org/linux/man-pages/man2/pipe.2.html
187 https://opensource.com/article/18/8/introduction-pipes-linux

https://www.baeldung.com/linux/anonymous-named-pipes
https://man7.org/linux/man-pages/man2/pipe.2.html
https://opensource.com/article/18/8/introduction-pipes-linux

Processes & Threads

In general, a process is a holder for a running instance of a program, that its executable code (and
could be also the shared libraries) loaded from some storage medium. A program can have
multiple running instances.If we think about it, a process is a resource management unit for
things like: memory address space, open files, threads (at least one), data section, timers, signal
handlers, sockets and more. Threads represent the execution flows of a running program (that is
also what the kernel schedules). Moreover, threads also include: the program counter, stack and
processor registers state190.

From the Linux perspective threads and processes are the same, you can think of threads as
processes sharing the same memory space (more on that in the future). The theory of operating
systems states that all the information of a process is managed by a PCB (Process Control
Block) — in Linux it is “task_struct”191. In parallel there is a TCB (Thread Control Block) that
holds the relevant information about threads, under Linux it is also “task_struct”.

In order to access the information about a process under Linux from user-space we can use
“/proc” (“man 5 proc”) - as shown in the output of strace below. It is what the command “ps”
does (“man ps”) as shown in the screenshot below (from copy.sh while calling “strace `which ps
-ef`”). Lastly, under Linux we have to use two different syscalls “fork” (“man 2 fork”) and
another one from the “execve” (“man 2 execve”) family in order to create a new process192.

192 https://www.softprayog.in/programming/creating-processes-with-fork-and-exec-in-linux
191 https://elixir.bootlin.com/linux/v6.1/source/include/linux/sched.h
190 https://linux-kernel-labs.github.io/refs/heads/master/lectures/processes.html

https://www.softprayog.in/programming/creating-processes-with-fork-and-exec-in-linux
https://elixir.bootlin.com/linux/v6.1/source/include/linux/sched.h
https://linux-kernel-labs.github.io/refs/heads/master/lectures/processes.html

Why never trust only the source code? And verify
the created binary (Compiler Optimizations)

One might think if in the source code we see a specific call to a C library function the ELF
binary will contain a call to that specific function. Let's take an example (while using gcc), in our
source code we call “printf” - as shown in the screenshot below. Using the command “gcc
troller.c -o ./troller” we compile and link the source to an ELF binary and execute it. However,
using “nm -D” (which lists the dynamic symbols used by the binary193) we don’t see “printf” we
just see “puts”. We can also verify it using objdump (which disassembles the binary194) - as
shown in the screenshot below.

Moreover, the only reason that optimization was possible is because we have not passed a
formater to “printf” and that we added a newline at the end of the string. Without the newline the
optimizer could not use “puts” because it adds a trailing newline195.

Lastly, those optimizations can also lead to security vulnerabilities (more on that in future
writeups). Also, the reason we see in objdump’s output “puts@plt” and not just “puts” is due to
the way dynamic symbols are located/used in the case of dynamic linking.

195 https://linux.die.net/man/3/puts
194 https://linux.die.net/man/1/objdump
193 https://linux.die.net/man/1/nm

https://linux.die.net/man/3/puts
https://linux.die.net/man/1/objdump
https://linux.die.net/man/1/nm

D-BUS (Desktop Bus)

D-BUS (Desktop BUS) is a message bus system (based on the dbus protocol) which allows
applications to pass information between each other. Beside providing IPC (inter-process
communication) can help in coordinating the lifecycle of processes. D-BUS is mostly
implemented using a dbus daemon (which can be executed system wide/per user session) and a
set of libraries196. There are different implementations for D-BUS such as: “GDBus”, “sd-bus”
and “kdbus”. Probably the most widely used is the reference implementation “libdbus”197,
developed by the same freedesktop.org project that designed the specification198.

Overall, D-BUS provides both IPC and RPC (Remote Procedure Call) mechanisms. Objects are
uniquely identified through the combination of a bus name and object path199. We can use
different debugging tools for exploring D-BUS connections such as: “busctl”200, “Qt D-BUS
Viewer”201 or “D-Spy”202 - as shown in the screenshot below.

Lastly, examples (but not limited to) for projects using\leveraging D-BUS are: “KPlayer”, “Ark”,
“Pidgin”, “Gossip”, and “Avahi”203. All the D-BUS discussion can be found as part of the dbus
mailing list204. Also, there could be multiple buses for example Linux desktops are using two:
“System Bus” (relevant for all users/processes) and “Session Bus” - as shown in the GUI
screenshot below. Based on permissions a process can connect to every bus.

204 https://lists.freedesktop.org/mailman/listinfo/dbus/
203 https://www.freedesktop.org/wiki/Software/DbusProjects/
202 https://apps.gnome.org/Dspy/
201 https://doc.qt.io/qt-6/qdbusviewer.html

200 https://man.archlinux.org/man/busctl.1
199 https://pythonhosted.org/txdbus/dbus_overview.html
198 https://en.wikipedia.org/wiki/D-Bus
197 https://gitlab.freedesktop.org/dbus/dbus
196 https://www.freedesktop.org/wiki/Software/dbus/

https://lists.freedesktop.org/mailman/listinfo/dbus/
https://www.freedesktop.org/wiki/Software/DbusProjects/
https://apps.gnome.org/Dspy/
https://doc.qt.io/qt-6/qdbusviewer.html
https://man.archlinux.org/man/busctl.1
https://pythonhosted.org/txdbus/dbus_overview.html
https://en.wikipedia.org/wiki/D-Bus
https://gitlab.freedesktop.org/dbus/dbus
https://www.freedesktop.org/wiki/Software/dbus/

The Weirdness Behind the Implementation of
“alloca”

As part of the C programming language we have the library function called “alloca”. It is used in
order to allocate bytes of space on the stack frame of the caller. Thus, this space is automatically
freed when the function called “alloca” returns. Due to that it is also faster than malloc and
free205.

Overall, it is important to understand that after building the binary there won’t be any call to
“alloca” - as shown in the screenshot below. The reason for that is if there was a function call to
“alloca” a new stack frame would have been created and the calling function wouldn't be able to
access the data on the stack. Due to that, we can’t change its behavior by linking to another
implementation.By the way, those who are wondering why there is a symbol of “puts” and not
“printf” although in our code calls “printf” I suggest reading my previous writeup about it206.

Lastly, the implementation of “alloca” is machine/compiler dependent. For example gcc replaces
it with “__builtin_alloca()”. It does not validate the parameters of the function so it can exceed
the limit of the stack if the caller does not check for it207.

207 https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html
206 https://medium.com/@boutnaru/code-optimizations-why-never-trust-only-the-source-code-and-verify-the-created-binary-c24047427251
205 https://man7.org/linux/man-pages/man3/alloca.3.html

https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html
https://medium.com/@boutnaru/code-optimizations-why-never-trust-only-the-source-code-and-verify-the-created-binary-c24047427251
https://man7.org/linux/man-pages/man3/alloca.3.html

GNU Toolchain
A toolchain is a set of programming utilities/tools used for building/running and even debugging
applications/OSes208 - as shown in the flow diagram below209. Among those tools are: compilers,
debuggers, assemblers, linkers and more210.

Overall, in the case of the GNU toolchain it is used for building the Linux kernel and other Linux
applications. This toolchain includes: “GNU make”, “GNU Compiler Collections” (gcc), “GNU
Debugger” (gdb), “GNU Build System” (autotools), “GNU C Library” (glibc or eglibc) and
“GNU Binutils” (linker, assembler and other library/object manipulation tools)211.

Lastly, the GNU toolchain is available for different processor architectures like: ARM, x86-64,
SupserH, RISC-V, MIPS, PowerPC, IA-32, IA-64, PA-RISC, HC12 and more212. By the way,
they are also portings of the GNU toolchain for Windows213.

213 https://gnutoolchains.com/
212 https://en.wikipedia.org/wiki/GNU_Compiler_Collection
211 https://developer.arm.com/documentation/den0013/d/Tools--Operating-Systems-and-Boards/Software-toolchains-for-ARM-pro cessors/GNU-toolchain
210 https://stackoverflow.com/questions/50104079/what-exactly-is-a-toolchain
209 https://microcontrollerslab.com/embedded-systems-build-process-using-gnu-toolchain/
208 https://www.jetbrains.com/help/clion/how-to-create-toolchain-in-clion.html

https://gnutoolchains.com/
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://developer.arm.com/documentation/den0013/d/Tools--Operating-Systems-and-Boards/Software-toolchains-for-ARM-processors/GNU-toolchain
https://stackoverflow.com/questions/50104079/what-exactly-is-a-toolchain
https://microcontrollerslab.com/embedded-systems-build-process-using-gnu-toolchain/
https://www.jetbrains.com/help/clion/how-to-create-toolchain-in-clion.html

KVM (Kernel-based Virtual Machine)
KVM (Kernel-based Virtual Machine) is an open source full virtualization solution for Linux. It
is targeting the x86 architecture. It leverages the “Intel VT” or “AMD-V” virtualization
extensions. The main components of KVM are: “kvm.ko” (provides the core virtualization
infrastructure). By using KVM we can execute multiple VMs running unmodified versions of
OSes (like Windows and Linux). Every VM can have its own virtual: CPUs, memory and
more214. It is important to know that KVM emulates only a subset of hardware devices. Thus,
KVM defers to other client applications such “FireCracker”, “crosvm” and “QEMU” for device
emulation - as shown in the diagram below215.

Overall, KVM was first introduced in October 2006 by “Avi Kivity” using a post in the “Linux
Kernel Mailing List”. As part of his post he describes that patchset adds a driver for Intel’s
virtualization extension which is exposed using a chartered device (“/dev/kvm”). This is done to
enable the usage of virtualization capabilities from userspace216. After the support for Intel’s
VMX instructions the support for AMD’s SVM instructions was introduced in November
2006217. By the way, KVM has been ported to other operating systems (beside Linux) like
FreeBSD218.

Lastly, the KVM patch has been part of the kernel since version 2.6.20 (February 2007). Today
they are different projects which leverage KVM as their default hypervisor. Probably the most
known are OpenStack and oVirt219. For reference I suggest going over the code of KVM as part
of the Linux kernel220. Although KVM had been originally designed for x86 processors, support
for other processors (like ARMand PowerPC) were added221.

221 https://www.linux-kvm.org/page/Processor_support
220 https://elixir.bootlin.com/linux/v6.12.1/source/virt/kvm
219 https://lwn.net/Articles/705160/
218 https://docs.freebsd.org/en/books/handbook/virtualization/
217 https://lkml.iu.edu/hypermail/linux/kernel/0611.3/0850.html
216 https://lkml.iu.edu/hypermail/linux/kernel/0610.2/1369.html
215 https://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine
214 https://linux-kvm.org/page/Main_Page

https://www.linux-kvm.org/page/Processor_support
https://elixir.bootlin.com/linux/v6.12.1/source/virt/kvm
https://lwn.net/Articles/705160/
https://docs.freebsd.org/en/books/handbook/virtualization/
https://lkml.iu.edu/hypermail/linux/kernel/0611.3/0850.html
https://lkml.iu.edu/hypermail/linux/kernel/0610.2/1369.html
https://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine
https://linux-kvm.org/page/Main_Page

Kconfig

Kconfig is a selection based configuration system. It was originally developed for the Linux
kernel (but can and used by other projects today). We can use it in order to select build time
options and/or enable\disable features222. With Kconfig there are different config interpreters that
can be used like: “config”, “nconfig” (menu based), “menuconfig” (also menu based), “xconfig”
(QT based), “gconfig” (GTK+ based) and more223.

Overall, all the configuration parameters are defined in a Kconfig format (more on the format in
a future writeup). Different Kconfig interpreters \utilities parses the config file and displays
(CLI\menu\GUI) the different configuration with the ability to modify it - as shown in the
screenshot below224.

Lastly, the configuration options are also called “symbols”. We can define dependencies between
symbols (as part of the Kconfig files) to enforce what configuration is valid. Also, symbols can
be grouped into menus/submenus to organize the config interface225. For more information I
suggest also going over the Kconfig documentation as part of the Linux kernel documentation226.

226 https://docs.kernel.org/kbuild/kconfig-language.html
225 https://docs.zephyrproject.org/latest/build/kconfig/index.html
224 https://habr.com/en/articles/515398/
223 https://devpress.csdn.net/linux/62f636b9c6770329307fc366.html
222 https://docs.legato.io/21_05/toolsKconfig.html

https://docs.kernel.org/kbuild/kconfig-language.html
https://docs.zephyrproject.org/latest/build/kconfig/index.html
https://habr.com/en/articles/515398/
https://devpress.csdn.net/linux/62f636b9c6770329307fc366.html
https://docs.legato.io/21_05/toolsKconfig.html

Makefile

The goal of using “Makefiles” is for helping us in deciding the portion of a large program we
want to compile/recompile. We can also use “Makefiles” to run a series of instructions based on
what files have been changed. Makefiles are very popular for C\C++ development under Linux,
however there are also alternative build systems such as: CMake, Bazel and Ninja. A “Makefile”
is composed by a set of rules, which includes targets (files names separated by spaces),
prerequisites (the file names which need exist before running the commands of the targets) and
commands which have to start with tabs for indentation227 - as shown in the screenshot below.

Overall, we can think about makefiles as a declarative programming language with conditions
but without describing the order of execution between targets. It is important to know that we can
define macros in makefiles which act like variables and can be overridden using command line
arguments passed to the Make utility228. Also we can have include statements, pattern matching
rules and comments which are marked using “#”229.

Lasty, the make utility is used to parse Makefiles and thus automates the building process of an
application from source code230. For a reference Makefile I suggest going over the main Makefile
of the Linux kernel231.

231 https://github.com/torvalds/linux/blob/master/Makefile
230 https://www.redswitches.com/blog/make-command-in-linux/
229 https://en.wikipedia.org/wiki/Make_(software)
228 https://linux.die.net/man/1/make
227 https://makefiletutorial.com/

https://github.com/torvalds/linux/blob/master/Makefile
https://www.redswitches.com/blog/make-command-in-linux/
https://en.wikipedia.org/wiki/Make_(software)
https://linux.die.net/man/1/make
https://makefiletutorial.com/

Page Faults

After understanding “Demand Paging”232 it is time to deep dive into “Page Faults”. We can split
page faults into two types: “Major Page Faults” and “Minor Page Faults”. But before we talk
about them let us define what is a “Page Miss” and a “Page Hit”.“Page Hit” describes the case in
which the CPU references an address in a page and that page is loaded into memory. On the
other end, “Page Miss” is the opposite case in which the page we want to reference is not loaded
into memory.

Basically, a “Major Page Fault” is the case where the page we want to reference exists only on
the system disk, thus reading it will be an expensive operation. This type is also called “Hard
Page Fault”. On the other hand, “Minor Page Fault” is a case in which the required page is not
stored on disk but in some other place in memory. An example for that is in the working set of
another process. It is also sometimes called “Soft Page Fault”.

The Linux kernel holds statistics about both minor and major page faults. They are saved as part
of “task_struct” (current->maj_flt and and current->min_flt)233. The relevant function that
handles the accounting is “mm_account_fault”234. It is crucial to understand that kernel threads
never page fault or should access user space addresses. The only exception for that is if
vmalloc() is used. If kmalloc() is used the pages are never paged. More about vmalloc() and
kmalloc() in the future. In order to demonstrate what we have learned we can execute the
following command “ps -eo min_flt,maj_flt,comm” that will show us the statistics for major and
minor page faults on our system. You can see the output in the screenshot below, we can see that
for each kernel thread the values are zero and for other processes we have different numbers.

234 https://elixir.bootlin.com/linux/v6.0.1/source/mm/memory.c#L5077
233 https://elixir.bootlin.com/linux/v6.0.1/source/include/linux/sched.h#L1030
232 https://medium.com/@boutnaru/linux-memory-management-part-2-demand-paging-38afdd85f447

https://elixir.bootlin.com/linux/v6.0.1/source/mm/memory.c#L5077
https://elixir.bootlin.com/linux/v6.0.1/source/include/linux/sched.h#L1030
https://medium.com/@boutnaru/linux-memory-management-part-2-demand-paging-38afdd85f447

Session

In general, a “Session” is a collection of “Process Groups”235, which is identified by a session ID
(SID). This value is inherited from the session leader that has created the session236. It is common
for services/daemons to be encapsulated in a session, which simplifies stopping/starting them by
grouping all of their processes237.

Moreover, a new session is created in two major cases. First, when logging with a user
interactively the shell processes becomes a session leader. Second, a daemon starts and wants to
create its own session. A diagram is included below which demonstrates the relationship between
the sessions and process groups 238.

Lastly, in order to create a new session we can use the “setsid” system call239. Also, we can read
the session ID of a process from “/proc/[PID]/status”, it is saved in the “NSsid” field240. Overall,
a session can have a controlling tty and at most one process group in the foreground241.

241 https://www.win.tue.nl/~aeb/linux/lk/lk-10.html
240 https://man7.org/linux/man-pages/man5/proc_pid_status.5.html
239 https://man7.org/linux/man-pages/man2/setsid.2.html
238 https://biriukov.dev/docs/fd-pipe-session-terminal/3-process-groups-jobs-and-sessions/
237 https://www.elastic.co/blog/linux-process-and-session-model-as-part-of-security-alerting-and-monitoring
236 https://biriukov.dev/docs/fd-pipe-session-terminal/3-process-groups-jobs-and-sessions/
235 https://medium.com/@boutnaru/the-linux-concept-journey-process-group-b39e733087e9

https://www.win.tue.nl/~aeb/linux/lk/lk-10.html
https://man7.org/linux/man-pages/man5/proc_pid_status.5.html
https://man7.org/linux/man-pages/man2/setsid.2.html
https://biriukov.dev/docs/fd-pipe-session-terminal/3-process-groups-jobs-and-sessions/
https://www.elastic.co/blog/linux-process-and-session-model-as-part-of-security-alerting-and-monitoring
https://biriukov.dev/docs/fd-pipe-session-terminal/3-process-groups-jobs-and-sessions/
https://medium.com/@boutnaru/the-linux-concept-journey-process-group-b39e733087e9

IPC Methods Between Kernel and User Space

Due to the fact that kernel-mode code and user-mode code don’t share the same memory address
space (because of security reasons) in case we want them to communicate we need some kind of
an “IPC” mechanism. Examples of such methods for passing data between user-mode and kernel
mode are: system calls (like ioctl), the proc filesystem and netlink sockets242.

Overall, system calls are a fundamental interface between user-mode code and the Linux
kernel243. Among the different syscalls we have “ioctl” (I/O Control), which can be used for
manipulating the underlying device of special file244.

Lastly, we use the proc filesystem for reading/writing (like by using the read/write syscalls)
information to the kernel245. By creating a proc kernel module we can expand the IPC flow of
information between user mode and kernel mode246. Also, we can use the socket API (socket
related syscalls) for IPC between user-mode and kernel mode by leveraging netlink sockets247 -
as shown in the diagram below248.

248 https://dev.to/jemaloqiu/netlink-communication-between-kernel-and-user-space-2mg1
247 https://man7.org/linux/man-pages/man7/netlink.7.html
246 https://www.cs.fsu.edu/~cop4610t/lectures/project2/procfs_module/proc_module.pdf
245 https://man7.org/linux/man-pages/man5/procfs.5.html
244 https://man7.org/linux/man-pages/man2/ioctl.2.html
243 https://medium.com/@boutnaru/the-linux-concept-journey-syscalls-system-calls-efcd7703e072
242 https://github.com/mwarning/netlink-examples/blob/master/articles/Why_and_How_to_Use_Netlink_Socket.md

https://dev.to/jemaloqiu/netlink-communication-between-kernel-and-user-space-2mg1
https://man7.org/linux/man-pages/man7/netlink.7.html
https://www.cs.fsu.edu/~cop4610t/lectures/project2/procfs_module/proc_module.pdf
https://man7.org/linux/man-pages/man5/procfs.5.html
https://man7.org/linux/man-pages/man2/ioctl.2.html
https://medium.com/@boutnaru/the-linux-concept-journey-syscalls-system-calls-efcd7703e072
https://github.com/mwarning/netlink-examples/blob/master/articles/Why_and_How_to_Use_Netlink_Socket.md

Netlink

Netlink is a socket family (datagram based) that we can use for IPC249 between user-space and
kernel space components. Those sockets can be used for local communication only by leveraging
the socket API (rec/recvmsg/etc). Netlink is often used as a replacement for ioctl250. While unix
domain sockets leverage the file-system namespace, Netlink sockets are usually addressed using
process identifiers251.

Overall, in order to use netlink we need to pass “AF_NETLINK” as the “communication
domain” as the first argument of the “socket” syscall252. The message header of netlink is defined
using “struct nlmsghdr” as part of “netlink.h” in the Linux kernel source code253 - as shown in
the diagram below. This is followed by a protocol header, like “Generic Netlink” header (struct
genlmsghdr)254.

Lastly, the third argument (netlink_family) for the socket syscall when using Netlink is used for
selecting the relevant kernel module\netlink group we want to communicate with. Examples of
such values are: “NETLINK_ROUTE” (receives routing and link updates), “NETLINK_XFRM”
(IPSec), “NETLINK_AUDIT” (auditing), “NETLINK_RDMA” (Infiniband RDMA) and
more255. By the way, we can add our own Netlink handler and implement additional Netlink
protocols256.

256 https://www.linuxjournal.com/article/7356
255 https://man7.org/linux/man-pages/man7/netlink.7.html
254 https://www.yaroslavps.com/weblog/genl-intro/
253 https://elixir.bootlin.com/linux/v6.13.5/source/include/uapi/linux/netlink.h#L52
252 https://man7.org/linux/man-pages/man2/socket.2.html
251 https://en.wikipedia.org/wiki/Netlink
250 https://docs.kernel.org/userspace-api/netlink/intro.html
249 https://medium.com/@boutnaru/the-linux-concept-journey-ipc-methods-between-kernel-and-user-space-3cde144341e9

https://www.linuxjournal.com/article/7356
https://man7.org/linux/man-pages/man7/netlink.7.html
https://www.yaroslavps.com/weblog/genl-intro/
https://elixir.bootlin.com/linux/v6.13.5/source/include/uapi/linux/netlink.h#L52
https://man7.org/linux/man-pages/man2/socket.2.html
https://en.wikipedia.org/wiki/Netlink
https://docs.kernel.org/userspace-api/netlink/intro.html
https://medium.com/@boutnaru/the-linux-concept-journey-ipc-methods-between-kernel-and-user-space-3cde144341e9

Unix Domain Sockets

“Unix Domain Sockets” are a method for local IPC (Inter Process Communication). They are
based on the socket family “AF_UNIX” (aka “AF_LOCAL”). Also, unix domain sockets (UDS)
can be unnamed\bound to a filesystem location\path (based on the information passed to the
“bind” syscall or when using the "socketpair" syscall) - as shown in the screenshot below. Unix
domain sockets allows us to pass FDs (file descriptors) or credentials using ancillary data257 by
leveraging the “sendmsg” and “recvmsg” syscalls258.

Overall, unix domain sockets don’t reorder datagrams and from kernel version 2.6.4 we also
have “SOCK_SEQPACKET”259 for sequential packet socket. One of the benefits of using unix
domain sockets is we can leverage the socket API (send/recv/connect/bind/listen/accept/etc) and
its error handling260 as opposed of using a pipe/named pipe for IPC261.

Lastly, UDS provides different advantages such as: bypassing the networking stack which
improves performance detecting error as compared to UDP\pipes262. Although it is not
mandatory, socket files usually have the “.sock”\”.socket” extension like “docker.sock”263.

263 https://www.bordergate.co.uk/docker-penetration-testing/
262 https://docs.datadoghq.com/developers/dogstatsd/unix_socket/
261 https://man7.org/linux/man-pages/man3/mkfifo.3.html
260 https://dev.to/____marcell/unix-domain-socketipc-how-to-make-two-programs-communicate-with-each-other-8l6
259 https://elixir.bootlin.com/linux/v6.13.7/source/include/linux/net.h#L55
258 https://en.wikipedia.org/wiki/Unix_domain_socket
257 https://man7.org/linux/man-pages/man7/unix.7.html

https://www.bordergate.co.uk/docker-penetration-testing/
https://docs.datadoghq.com/developers/dogstatsd/unix_socket/
https://man7.org/linux/man-pages/man3/mkfifo.3.html
https://dev.to/____marcell/unix-domain-socketipc-how-to-make-two-programs-communicate-with-each-other-8l6
https://elixir.bootlin.com/linux/v6.13.7/source/include/linux/net.h#L55
https://en.wikipedia.org/wiki/Unix_domain_socket
https://man7.org/linux/man-pages/man7/unix.7.html

IOCTL (Input/Output Control)

IOCTL (Input/Output Control) is a syscall as part of the Linux operating system264 that is used
for manipulating parameters of devices exposed by special files. For example terminals, which
are character devices265 can be controlled using “ioctl”266.

Overall, like with other syscalls we can user “ioctl” as an IPC mechanisms for passing
information between user-mode and kernel mode267. The first argument of the syscall should be
an open fd (file descriptor) ,the second one is a device-dependent request code and the third
untyped pointer to memory268. An example of request code (like SIOCDELRT) used for IP
routing control is shown in the table below269. We can check the Linux source code for such
implementations270.

Lastly, “ioctl” is used for input/output operations in which we can leverage other syscalls (like
read/write/etc). It is a concept which is relevant also for other operating systems (not only
Linux)271. For example, in Windows we have “DeviceIoControl”272.

272 https://learn.microsoft.com/en-us/windows/win32/api/ioapiset/nf-ioapiset-deviceiocontrol
271 https://en.wikipedia.org/wiki/Ioctl
270 https://elixir.bootlin.com/linux/v6.13.7/source/net/ipv4/fib_frontend.c#L634
269 https://www.slideserve.com/penda/ioctl-function
268 https://linux.die.net/man/2/ioctl
267 https://medium.com/@boutnaru/the-linux-concept-journey-ipc-methods-between-kernel-and-user-space-3cde144341e9
266 https://man7.org/linux/man-pages/man2/ioctl.2.html
265 https://medium.com/@boutnaru/the-linux-concept-journey-character-devices-0c75aa70ceb2
264 https://medium.com/@boutnaru/the-linux-concept-journey-syscalls-system-calls-efcd7703e072

https://learn.microsoft.com/en-us/windows/win32/api/ioapiset/nf-ioapiset-deviceiocontrol
https://en.wikipedia.org/wiki/Ioctl
https://elixir.bootlin.com/linux/v6.13.7/source/net/ipv4/fib_frontend.c#L634
https://www.slideserve.com/penda/ioctl-function
https://linux.die.net/man/2/ioctl
https://medium.com/@boutnaru/the-linux-concept-journey-ipc-methods-between-kernel-and-user-space-3cde144341e9
https://man7.org/linux/man-pages/man2/ioctl.2.html
https://medium.com/@boutnaru/the-linux-concept-journey-character-devices-0c75aa70ceb2
https://medium.com/@boutnaru/the-linux-concept-journey-syscalls-system-calls-efcd7703e072

dnotify (Directory Notification)

dnotify (Directory Notification) is a file system event monitoring capability as part of the Linux
kernel. It has been introduced as part of kernel 2.4. It has several limitations. First, dnotify can
only watch directories. Second, it requires maintaining an open fd (file descriptor) to the
directory that the user wants to watch. Thus, we can’t unmount a device which has a monitored
directory and our watch list is bound by the open file limit of the specific process performing the
monitoring273.

Overall, we can use dnotify for being notified when a directory\files in it are changed. The
notifications are registered using the “fcntl” syscall274 while the events are being delivered using
signals. The relevant events are: a file in the directory was accessed (read), a file in the directory
was modified, a file in the directory was unliked, a file in the directory was renamed, a file was
created in the directory and a file in the directory had its attributes changed275.

Lastly, dnotify had been replaced by inotify276. We can also checkout the implementation of
dnotify as part of the Linux kernel277. When a specific syscall is triggered (which is relevant for
an event we want to monitor) the kernel can notify (using signals) about the operation - as shown
in the diagram below278.

278 https://jailbreakfox.github.io/2022/04/22/Linux%E6%96%87%E4%BB%B6%E4%BA%8B%E4%BB%B6%E7%9B%91%E6%8E%A7/
277 https://elixir.bootlin.com/linux/v6.13.7/source/fs/notify/dnotify/dnotify.c
276 https://man7.org/tlpi/code/online/dist/inotify/dnotify.c.html
275 https://www.kernel.org/doc/Documentation/filesystems/dnotify.txt
274 https://man7.org/linux/man-pages/man2/fcntl.2.html
273 https://en.wikipedia.org/wiki/Dnotify

https://jailbreakfox.github.io/2022/04/22/Linux%E6%96%87%E4%BB%B6%E4%BA%8B%E4%BB%B6%E7%9B%91%E6%8E%A7/
https://elixir.bootlin.com/linux/v6.13.7/source/fs/notify/dnotify/dnotify.c#L51
https://man7.org/tlpi/code/online/dist/inotify/dnotify.c.html
https://www.kernel.org/doc/Documentation/filesystems/dnotify.txt
https://man7.org/linux/man-pages/man2/fcntl.2.html
https://en.wikipedia.org/wiki/Dnotify

inotify (Inode Notification)

inotify (Inode Notification) is a simple change notification system279. The Linux kernel supports
inotify since kernel 2.6.13. Using the inotify API we can monitor individual files/folders. inotify
works based on inodes280. Thus if we monitor a file an event can be triggered for an activity on a
link also281. There are several configuration limits for inotify: “max_user_instances” (how many
applications can watch files, per user), “max_user_watches” (how many filesystem items can be
watched, across all applications, per user) and “max_queued_events” (how many filesystem
events will be held in the kernel queue if the application does not read them). Those are in
parallel to physical limits282.

Overall, the above configuration is read\altered by using procfs (/proc/sys/fs/inotify/) and/or
sysctl283. Also, inotify had replaced dnotify284 due to reasons such as: inotify supports monitoring
individual files and entire directories, inotify uses fewer resources, inotify is more widely
supported and provides more detailed event notifications285. ​

Lastly, inotify uses dedicated syscalls: “inotify_init”\”inotify_init1” for initializing an inotify
instance286, “inotify_add_watch” used for adding a watch to an initialized inotify instance287 and
“inotify_rm_watch” that removes an existing watch288. The events are being consumed by using
the “read” syscall - as shown in the diagram below289.

289 https://lwn.net/Articles/604686/
288 https://man7.org/linux/man-pages/man2/inotify_rm_watch.2.html
287 https://man7.org/linux/man-pages/man2/inotify_add_watch.2.html
286 https://man7.org/linux/man-pages/man2/inotify_init.2.html
285 https://www.baeldung.com/linux/dnotify-inotify-monitor-directory
284 https://medium.com/@boutnaru/the-linux-concept-journey-dnotify-directory-notification-6204db62ea45
283 https://www.suse.com/support/kb/doc/?id=000020048
282 https://watchexec.github.io/docs/inotify-limits.html
281 https://man7.org/linux/man-pages/man7/inotify.7.html
280 https://medium.com/@boutnaru/linux-what-is-an-inode-7ba47a519940
279 https://www.kernel.org/doc/html/v6.4/filesystems/inotify.html

https://lwn.net/Articles/604686/
https://man7.org/linux/man-pages/man2/inotify_rm_watch.2.html
https://man7.org/linux/man-pages/man2/inotify_add_watch.2.html
https://man7.org/linux/man-pages/man2/inotify_init.2.html
https://www.baeldung.com/linux/dnotify-inotify-monitor-directory
https://medium.com/@boutnaru/the-linux-concept-journey-dnotify-directory-notification-6204db62ea45
https://www.suse.com/support/kb/doc/?id=000020048
https://watchexec.github.io/docs/inotify-limits.html
https://man7.org/linux/man-pages/man7/inotify.7.html
https://medium.com/@boutnaru/linux-what-is-an-inode-7ba47a519940
https://www.kernel.org/doc/html/v6.4/filesystems/inotify.html

Limitations When Using inofity (Inode Notification)

As with every technology also “inotify” has its own limitations. Among those limitations we find
the following. Inability to monitor recursive directories. Thus, we need to have a separate
“inotify watch”290 for every subdirectory we want to monitor. Also, in case a file is renamed we
get two discrete events that we have to correlate (there is not a specific rename event), which can
have a potential race condition291.

Moreover, the “inotify” API does not provide any information about the process/user which
caused the creation of an inotify event. Hence, in case we use the “inotifywatch” utility only the
operation is given as extra metadata292 - as shown in the screenshot below293. By the way,
inotify events are based on filenames, due to that we can get an event which is processed after
the filename has been changed294.

Lastly, because inotify is based on an event queue in case of an overflow, events can be lost295. It
is important to know that there are some filesystems which don’t fully support inotify such like a
couple of network filesystems and procfs296.

296 https://inotify.aiken.cz/?section=inotify&page=faq&lang=en
295 https://groups.google.com/g/lsyncd/c/2dB_z8K5OSs
294 https://linux.die.net/man/7/inotify
293 https://linuxhint.com/linux-inotify-command/
292 https://linux.die.net/man/1/inotifywait
291 https://www.clariontech.com/blog/all-you-need-to-know-about-inotify
290 https://medium.com/@boutnaru/the-linux-concept-journey-inotify-inode-notification-a514cccee704

https://inotify.aiken.cz/?section=inotify&page=faq&lang=en
https://groups.google.com/g/lsyncd/c/2dB_z8K5OSs
https://linux.die.net/man/7/inotify
https://linuxhint.com/linux-inotify-command/
https://linux.die.net/man/1/inotifywait
https://www.clariontech.com/blog/all-you-need-to-know-about-inotify
https://medium.com/@boutnaru/the-linux-concept-journey-inotify-inode-notification-a514cccee704

fanotify (Inode Notification)

“fanotifiy” is a Linux API that can be used by user space applications in order to receive file
events in the system in real-time297. Examples of relevant use-cases are: virus scanning and\or
hierarchical storage management. Until kernel 5.1 there was no support for create\delete\move
events as part of “fanotify”298. Thus, before kernel 5.1 we would need to use “inotify”299 or the
older “dnotify”300.

Overall, as compared to “inotify” we can use “fanotify” to monitor all of the objects in a
mounted filesystem. Also, it has the ability to make access permission decisions and to
read\modify files before access by other applications. “fanotify” is based on dedicated syscalls
(like “fanotify_init” and “fanotify_mark”), general syscalls (like “read” and “write”) and
“notifications groups”301 - more on those and others in future writeups.

Lastly, we can check out the “fanotify” implementation as part of the Linux kernel source
code302. While “inotify” does not contain any information about the process which triggered an
event, “fanotify” has the PID of that process303. For enabling (fanotify) file-system wide access
notification we should set “CONFIG_FANOTIFY” as part of kernel build configuration304. For
fanotify permissions checking we should enable
“CONFIG_FANOTIFY_ACCESS_PERMISSIONS”305 - as shown in the screenshot below.

305 https://elixir.bootlin.com/linux/v6.13.7/source/fs/notify/fanotify/Kconfig
304 https://cateee.net/lkddb/web-lkddb/FANOTIFY.html
303 https://habr.com/en/companies/pt/articles/783038/
302 https://elixir.bootlin.com/linux/v6.13.7/source/fs/notify/fanotify
301 https://man7.org/linux/man-pages/man7/fanotify.7.html
300 https://medium.com/@boutnaru/the-linux-concept-journey-dnotify-directory-notification-6204db62ea45
299 https://medium.com/@boutnaru/the-linux-concept-journey-inotify-inode-notification-a514cccee704
298 https://manpages.ubuntu.com/manpages/focal/en/man7/fanotify.7.html
297 https://success.trendmicro.com/en-US/solution/KA-0014210

https://elixir.bootlin.com/linux/v6.13.7/source/fs/notify/fanotify/Kconfig
https://cateee.net/lkddb/web-lkddb/FANOTIFY.html
https://habr.com/en/companies/pt/articles/783038/
https://elixir.bootlin.com/linux/v6.13.7/source/fs/notify/fanotify
https://man7.org/linux/man-pages/man7/fanotify.7.html
https://medium.com/@boutnaru/the-linux-concept-journey-dnotify-directory-notification-6204db62ea45
https://medium.com/@boutnaru/the-linux-concept-journey-inotify-inode-notification-a514cccee704
https://manpages.ubuntu.com/manpages/focal/en/man7/fanotify.7.html
https://success.trendmicro.com/en-US/solution/KA-0014210

fsnotify (File System Notification)

fsnotify (File System Notification) is a generic framework used to hook in order to provide
filesystem notification306. It had been created to reduce in-source duplication from both
“dnotify”307, “inotify”308 and “fanotify”309.

Overall, inotify was largely rewritten in 2009 to make use of the fsnotify infrastructure310. The
same was done also for “dnotify”311. Based on the kernel source code it seems that “fanotify” is
based on “fsnotify” since it was merged to the main kernel as part of version 2.6.36312 - as shown
in the screenshot below313.

Lastly, the relevant kernel configuration for “fsnotify” is “CONFIG_FSNOTIFY”314. Also, the
VFS (Virtual File System) layer calls hook specific functions (linux/fsnotify.h) which in turn call
the “fsnotify” function. It calls out to all of the registered “fsnotify_group”, those groups can
then use the notification event315.

315 https://elixir.bootlin.com/linux/v6.14.3/source/fs/notify/fsnotify.c#L517
314 https://www.kernelconfig.io/config_fsnotify
313 https://blog.csdn.net/weixin_32842805/article/details/112274768
312 https://elixir.bootlin.com/linux/v2.6.36/source/fs/notify/fanotify/fanotify.c#L3
311 https://elixir.bootlin.com/linux/v6.14.1/source/fs/notify/dnotify/dnotify.c#L8
310 https://elixir.bootlin.com/linux/v6.14.1/source/fs/notify/inotify/inotify_fsnotify.c#L13
309 https://medium.com/@boutnaru/the-linux-concept-journey-fanotify-inode-notification-6be8775cff9a
308 https://medium.com/@boutnaru/the-linux-concept-journey-inotify-inode-notification-a514cccee704
307 https://medium.com/@boutnaru/the-linux-concept-journey-dnotify-directory-notification-6204db62ea45
306 https://elixir.bootlin.com/linux/v6.14.1/source/include/linux/fsnotify.h#L6

https://elixir.bootlin.com/linux/v6.14.3/source/fs/notify/fsnotify.c#L517
https://www.kernelconfig.io/config_fsnotify
https://blog.csdn.net/weixin_32842805/article/details/112274768
https://elixir.bootlin.com/linux/v2.6.36/source/fs/notify/fanotify/fanotify.c#L3
https://elixir.bootlin.com/linux/v6.14.1/source/fs/notify/dnotify/dnotify.c#L8
https://elixir.bootlin.com/linux/v6.14.1/source/fs/notify/inotify/inotify_fsnotify.c#L13
https://medium.com/@boutnaru/the-linux-concept-journey-fanotify-inode-notification-6be8775cff9a
https://medium.com/@boutnaru/the-linux-concept-journey-inotify-inode-notification-a514cccee704
https://medium.com/@boutnaru/the-linux-concept-journey-dnotify-directory-notification-6204db62ea45
https://elixir.bootlin.com/linux/v6.14.1/source/include/linux/fsnotify.h#L6

Xen Hypervisor
Xen is a type-1 hypervisor which is open source. Among its key features are: small footprint,
driver isolation (while the main device driver for a system to run inside of a virtual machine and
in case of a crush/compromise it can be restarted without affecting the rest of the system) and
paravirtualization support (Xen can run on hardware that does not have virtualization
extensions). It was originally developed by the University of Cambridge Computer Laboratory.
Today it is being developed by the Linux Foundation316.

Overall, the Xen hypervisor is executed just after the bootloader and on top of it different virtual
machines (VMs) can run. A running VM is called domain/guest - as shown in the diagram below.
There is a special VM called “Domain 0” aka the “Control Domain” which has special privileges
(access the hardware directly, handles all access to the system’s I/O and interacts with the
VMs)317.

Lastly, Xen supports ARM\x86-64\IA-32 processors. We can download Xen directly from the
XenProject website318. I suggest also going over Xen’s source code for more information319.

319 https://github.com/xen-project/xen
318 https://downloads.xenproject.org/release/xen/
317 https://wiki.xenproject.org/wiki/Xen_Project_Software_Overview#What_is_the_Xen_Project_Hypervisor?
316 https://en.wikipedia.org/wiki/Xen

https://github.com/xen-project/xen
https://downloads.xenproject.org/release/xen/
https://wiki.xenproject.org/wiki/Xen_Project_Software_Overview#What_is_the_Xen_Project_Hypervisor
https://en.wikipedia.org/wiki/Xen

Xorg (X Windows System)

Xorg (x.org aka X) is an open source project which provides an implementation of the “X
Window System” (X11). The development work is done together with the “freedesktop.org”320
community. It is the most popular display server among Linux users. By the way, “Wayland” is a
replacement for the X11 windows system protocol321 - as shown in the diagram below322.

Overall, Xorg is a full featured X server that was originally designed for UNIX and UNIX-like
operating systems (running on Intel x86 hardware). Today it runs on a wider range of hardware
(such as Compaq Alpha, Intel IA64, AMD64, SPARC and PowerPC) and OS platforms (like
FreeBSD, NetBSD, OpenBSD, and Solaris). Xorg supports two major connection types: “Local”
(for example by leveraging Unix-domain socket) and “”TCP/IP” in which listens on port
“6000+n” where “n” is the display number323.

Lastly, Xorg is an open-source application that interacts with client applications through the X11
protocol. The X system (debuted in 1984) was designed to render graphics over a network. Also,
it is based on the client/server model. The benefit of the client/server model is that it allows
clients to run either locally\remotely. When a client connects and sends inputs like mouse
movements or keystrokes, it draws on the window display. Due to that client/server model,
applications need to communicate with Xorg before the compositor can create the window324.

324 https://www.cbtnuggets.com/blog/technology/devops/wayland-vs-xorg-wayland-replace-xorg
323 https://man.archlinux.org/man/Xorg.1
322(https://blog.csdn.net/a379039233/article/details/80782351
321 https://wiki.archlinux.org/title/Xorg
320 https://www.freedesktop.org/wiki/

https://www.cbtnuggets.com/blog/technology/devops/wayland-vs-xorg-wayland-replace-xorg
https://man.archlinux.org/man/Xorg.1
https://blog.csdn.net/a379039233/article/details/80782351
https://wiki.archlinux.org/title/Xorg
https://www.freedesktop.org/wiki/

Xfce (Desktop Environment)

Xfce is a lightweight desktop environment for UNIX-like operating systems. It is very low on
system resources, without giving up on a visually appealing and user friendly325 - as shown in the
screenshot below326. The Xfce desktop environment was initially released in 1996327.

Overall, as with GNOME it is also based on the GTK toolkit (but we don’t need to think about
Xfce as a fork of GNOME)328. Xfce is the default desktop environment in various Linux
distributions. Examples are: “Xubuntu”329, “Linux Lite”330, “QubesOS”331, “Kali Linux”332 and
“Whonix”333.

Lastly, Xfc comes built in with different components such as: “Catfish” (desktop search),
“Clipman” (clipboard manager), “Mousepad” (text editor), “Thunar” (file manager),
xfce4-Panel (task manager), “Xfwm” (window manager), Xfburn (burning CD/DVD/BRD) and
more334. We can check out Xfce core components and applications source code for more
information/details335.

​

335 https://gitlab.xfce.org/xfce
334 https://wiki.debian.org/Xfce
333 https://www.whonix.org
332 https://www.kali.org/
331 https://www.qubes-os.org/
330 https://www.linuxliteos.com/
329 https://xubuntu.org/
328 https://en.wikipedia.org/wiki/Xfce
327 https://betawiki.net/wiki/Xfce3
326 https://www.xfce.org/about/screenshots
325 https://www.xfce.org/

https://gitlab.xfce.org/xfce
https://wiki.debian.org/Xfce
https://www.whonix.org/
https://www.kali.org/
https://www.qubes-os.org/
https://www.linuxliteos.com/
https://xubuntu.org/
https://en.wikipedia.org/wiki/Xfce
https://betawiki.net/wiki/Xfce3
https://www.xfce.org/about/screenshots
https://www.xfce.org/

Zombie Processes

In general, zombie processes (aka defunct processes) are processes which have finished their
execution flow but still have an entry in the overall processes table. This phenomena happens
due to the fact that the parent process has not read the child’s exit status. Zombie processes don’t
require additional resources, however the existence of them can clutter the process table336.

Moreover, in case we have zombie processes we can’t send them a “SIGKILL”, thus we need to
signal the parent process to read the child process exit status. If we use “ps” zombie processes
are marked as “<defunct>” and in the state column (“STAT or “S” header) the are denoted using
“Z”337. Also, in the top command there is a specific counter for zombie processes338 - as shown
in the screen below339.

Lastly, the zombie state is saved as part of the the “exit_state” field340 of the process’ “struct
task_struct”341 structure. It is done using the “EXIT_ZOMBIE” define value342.

342 https://elixir.bootlin.com/linux/v6.6.8/source/include/linux/sched.h#L93
341 https://medium.com/@boutnaru/linux-kernel-task-struct-829f51d97275
340 https://elixir.bootlin.com/linux/v6.6.8/source/include/linux/sched.h#L879
339 https://www.linuxfordevices.com/tutorials/linux/defunct-zombie-process
338 https://man7.org/linux/man-pages/man1/top.1.html
337 https://man7.org/linux/man-pages/man1/ps.1.html
336 https://ioflood.com/blog/ps-linux-command/

https://elixir.bootlin.com/linux/v6.6.8/source/include/linux/sched.h#L93
https://medium.com/@boutnaru/linux-kernel-task-struct-829f51d97275
https://elixir.bootlin.com/linux/v6.6.8/source/include/linux/sched.h#L879
https://www.linuxfordevices.com/tutorials/linux/defunct-zombie-process
https://man7.org/linux/man-pages/man1/top.1.html
https://man7.org/linux/man-pages/man1/ps.1.html
https://ioflood.com/blog/ps-linux-command/

Uninterruptible Process

In the Linux realm we have two types of waiting processes: “interruptible processes” and “uninterruptible
processes”. In general this type of processes are waiting for an event of a resource343. An
“Uninterruptible” process (called task in the source code of the Linux kernel, thus a “Uninterruptible
Task”) which is executing a system call that cannot be interrupted by a signal344.

Moreover, “uninterruptible process” is flagged as “D” state in output of the “ps” utility345, described as
“uninterruptible sleep (usually I/O)” - as shown in the screenshot below346. Also, this type of processes are
defined in the Linux kernel source code as “TASK_UNINTERRUPTIBLE”347. As of kernel version 6.10
“TASK_UNINTERRUPTIBLE” is referenced in 248 files across the Linux source code348.

Lastly, “uninterruptible process” is not expecting to be woken up by anything other than whatever it is
waiting for, either because it cannot easily be restarted, or because programs are expecting the system call
to be atomic349. Also, we can’t kill such processes, even if we use SIGKILL350.

350 https://www.suse.com/support/kb/doc/?id=000016919
349 https://stackoverflow.com/questions/223644/what-is-an-uninterruptible-process
348 https://elixir.bootlin.com/linux/v6.10/C/ident/TASK_UNINTERRUPTIBLE
347 https://elixir.bootlin.com/linux/v6.10/source/include/linux/sched.h#L97
346 https://juicefs.com/zh-cn/blog/engineering/howto-solve-d-status-process/
345 https://man7.org/linux/man-pages/man1/ps.1.html
344 https://medium.com/@boutnaru/the-linux-concept-journey-signals-d1f37a9d2854
343 https://www.science.unitn.it/~fiorella/guidelinux/tlk/node45.html

https://www.suse.com/support/kb/doc/?id=000016919
https://stackoverflow.com/questions/223644/what-is-an-uninterruptible-process
https://elixir.bootlin.com/linux/v6.10/C/ident/TASK_UNINTERRUPTIBLE
https://elixir.bootlin.com/linux/v6.10/source/include/linux/sched.h#L97
https://juicefs.com/zh-cn/blog/engineering/howto-solve-d-status-process/
https://man7.org/linux/man-pages/man1/ps.1.html
https://medium.com/@boutnaru/the-linux-concept-journey-signals-d1f37a9d2854
https://www.science.unitn.it/~fiorella/guidelinux/tlk/node45.html

Linux File Types

As we know the philosophy of Linux is that “Everything is a file”. However, not all files are
created equally. We have 7 different file types: directory, regular file, named pipe, socket,
symbolic link, block device file and character device file351 - more information about each type in
future writeups.

Overall, we can identify the type of a file using the “ls” utility using the “-l” argument352. The
first character in each line identifies the type of the file - as described in the table below353.

Lastly, we can display only specific file types by filtering the output of “ls” using “grep”354. For
example if we want to see all regular files in the current directory we can use the following
one-liner: “ls -la | grep ^-”355.

355 https://www.2daygeek.com/find-identify-file-types-in-linux/
354 https://man7.org/linux/man-pages/man1/grep.1.html
353 https://www.2daygeek.com/wp-content/uploads/2019/01/find-identify-file-types-in-linux-4.png
352 https://man7.org/linux/man-pages/man1/ls.1.html
351 https://linuxconfig.org/identifying-file-types-in-linux

https://www.2daygeek.com/find-identify-file-types-in-linux/
https://man7.org/linux/man-pages/man1/grep.1.html
https://www.2daygeek.com/wp-content/uploads/2019/01/find-identify-file-types-in-linux-4.png
https://man7.org/linux/man-pages/man1/ls.1.html
https://linuxconfig.org/identifying-file-types-in-linux

Regular File

As we know the philosophy of Linux is that “Everything is a file”. However, not all files are
created equally. As you know there are seven different file types used in Linux356. The following
writeup is going to focus on regular files, those that when using “ls -l”357 are marked with “-” - as
shown in the screenshot below (taken using https://copy.sh/v86/?profile=archlinux).

Overall, it is important to understand that a type of a “regular file” is from the perspective of the
operating system and it does not describe the format of the file itself. We can check the format of
a file using the “file” command358. For example a “Regular File” can be an image file (such as
PNG, gif, JPEG or BMP), a text file, an executable (like ELF or PE), archive files (like RAR and
ZIP) and more - as shown in the screenshot below.

Lastly, probably the easiest way to create a regular file is by using the “touch” command359. By
the way, we can create a regular file in any directory360. For that to happen we just need to have
write permissions to the directory itself. Also, the mounted filesystem should not be read-only.

360 https://www.geeksforgeeks.org/how-to-find-out-file-types-in-linux/
359 https://man7.org/linux/man-pages/man1/touch.1.html
358 https://man7.org/linux/man-pages/man1/file.1.html
357 https://man7.org/linux/man-pages/man1/ls.1.html
356 https://medium.com/@boutnaru/the-linux-concept-journey-linux-file-types-4cb622887331

https://copy.sh/v86/?profile=archlinux
https://www.geeksforgeeks.org/how-to-find-out-file-types-in-linux/
https://man7.org/linux/man-pages/man1/touch.1.html
https://man7.org/linux/man-pages/man1/file.1.html
https://man7.org/linux/man-pages/man1/ls.1.html
https://medium.com/@boutnaru/the-linux-concept-journey-linux-file-types-4cb622887331

Directory File

As you know there are seven different file types used in Linux361. Among them we have a
“directory” file type, we can think about it as a “file” that holds in its content file names and
there representing inode numbers362.

Thus, using the “rm” utility363 basically removes the file from the directory and does not delete it
(until the reference count equals “0”). Also, because of that removing a file does not require any
permissions on the file itself, it requires having “write permissions” to the directory containing
the file.

Lastly, in order to create a new directory we can use the “mkdir” utility364 in order to create a
new directory or the “rmdir” utility365 in order to remove a directory - as shown in the screenshot
below (taken using https://copy.sh/v86/?profile=archlinux). A directory is marked with a “d” as
the first character in the output of the “ls -l” command366 - also shown in the screenshot below.

366 https://man7.org/linux/man-pages/man1/ls.1.html
365 https://man7.org/linux/man-pages/man1/rmdir.1.html
364 https://man7.org/linux/man-pages/man1/mkdir.1.html
363 https://linux.die.net/man/1/rm
362 https://medium.com/@boutnaru/linux-what-is-an-inode-7ba47a519940
361 https://medium.com/@boutnaru/the-linux-concept-journey-linux-file-types-4cb622887331

https://copy.sh/v86/?profile=archlinux
https://man7.org/linux/man-pages/man1/ls.1.html
https://man7.org/linux/man-pages/man1/rmdir.1.html
https://man7.org/linux/man-pages/man1/mkdir.1.html
https://linux.die.net/man/1/rm
https://medium.com/@boutnaru/linux-what-is-an-inode-7ba47a519940
https://medium.com/@boutnaru/the-linux-concept-journey-linux-file-types-4cb622887331

Link File (aka Symbolic Link)

As you know there are seven different file types used in Linux367. Among them we have a “link”
file type (aka “symbolic link’), which is used for pointing to other files368. When using “ls -l”369
link files are marked with “l” in the output - as shown in the screenshot below.

Overall, we can use the “ln” command370 to make links between files. It supports both creating
“hard links”371 and “symbolic links”. In order to create a “link file” we need to use the “-s”
switch - as shown in the screenshot below.

Lastly, as opposed to “hard links” that can’t be created to a directory a “symbolic link” can point
to a directory - as shown in the screenshot below. By the way, “symbolic links” are also called
“soft links”372.

372 https://www.geeksforgeeks.org/soft-hard-links-unixlinux/
371 https://medium.com/@boutnaru/the-linux-concept-journey-hard-link-f3e9b3d6b8c4
370 https://www.man7.org/linux/man-pages/man1/ln.1.html
369 https://man7.org/linux/man-pages/man1/ls.1.html
368 https://www.freecodecamp.org/news/linux-ln-how-to-create-a-symbolic-link-in-linux-example-bash-command/
367 https://medium.com/@boutnaru/the-linux-concept-journey-linux-file-types-4cb622887331

https://www.geeksforgeeks.org/soft-hard-links-unixlinux/
https://medium.com/@boutnaru/the-linux-concept-journey-hard-link-f3e9b3d6b8c4
https://www.man7.org/linux/man-pages/man1/ln.1.html
https://man7.org/linux/man-pages/man1/ls.1.html
https://www.freecodecamp.org/news/linux-ln-how-to-create-a-symbolic-link-in-linux-example-bash-command/
https://medium.com/@boutnaru/the-linux-concept-journey-linux-file-types-4cb622887331

Socket File

A socket file is one of the file types supported under Linux373. The main goal of a socket file is to
pass information between applications. For convenient applications which create socket files use
the “.socket”/”*.sock” suffix for the file name. Examples for such file names are: acpid.socket
and docker.sock374.

Overall, we can use the “AF_UNIX”/”AF_LOCAL” socket family for communicating between
processes on the same machine. This type of socket is known as “Unix Domain Sockets”. This
type of sockets can be unnamed or to be bound to a file-system path. We can use both
“SOCK_STREAM” (for stream oriented socket) or “SOCK_DGRAM” (for data-gram oriented).
Since Linux 2.6.4 we can use “SOCK_SEQPACKET” for a sequenced-packet socket, that
delivers messages in the order that they were sent375.

Lastly, when we create such a socket a “socket file” is created - as shown in the screenshot
below. Due to the fact it is a socket we can use any of the socket API functions on376 - it is a big
advantage as opposed to using regular files as an IPC. Also, it is important to understand that
even if “Unix Domain Sockets” are designed for local communication only, if we manage to
create our socket file on a remote device (like by using NFS/SMB) we can pass information
between remote processes - it can also be done using regular files however it is not the preferred
method for that.

376 https://www.baeldung.com/linux/python-unix-sockets
375 https://man7.org/linux/man-pages/man7/unix.7.html
374 https://www.bogotobogo.com/Linux/linux_File_Types.php
373 https://medium.com/@boutnaru/the-linux-concept-journey-linux-file-types-4cb622887331

https://www.baeldung.com/linux/python-unix-sockets
https://man7.org/linux/man-pages/man7/unix.7.html
https://www.bogotobogo.com/Linux/linux_File_Types.php
https://medium.com/@boutnaru/the-linux-concept-journey-linux-file-types-4cb622887331

Block Device File

As we know the philosophy of Linux is that “Everything is a file”. However, not all files are
created equally. A block device file is one of the supported file types by Linux377. The goal of a
“Block Device File” is to provide buffered access to a hardware device378.

Overall, block devices provide the ability to randomly access data which is organized in
fixed-size blocks379. Also, block device files are flagged with “b” in the output of “ls -l”380. By
default we can find them in the “/dev” directory - as shown in the screenshot below. Examples of
such block device files are: “/dev/sda” (first identified SCSI storage device), “/dev/mmcblk2”
(the third identified SD/MMC/eMMC storage device) and “/dev/nvme5n1” (the first identified
device on the sixth controller).

Lastly, we can create a block device file using the “mknod” command381, when using the
command we need to provide the major and minor numbers of the device382 - as shown in the
screenshot below. By the way, we can call the “mknod”/”mknodat” syscall383 in order to create a
block device file. Another useful command is “lsblk”384 which can list block devices on a
specific system.

384 https://linux.die.net/man/8/lsblk
383 https://man7.org/linux/man-pages/man2/mknod.2.html
382 https://medium.com/@boutnaru/the-linux-concept-journey-major-minor-numbers-56abe372482e

381 https://man7.org/linux/man-pages/man1/mknod.1.html
380 https://man7.org/linux/man-pages/man1/ls.1.html
379 https://medium.com/@boutnaru/the-linux-concept-journey-block-devices-f6f775852091
378 https://wiki.archlinux.org/title/Device_file
377 https://medium.com/@boutnaru/the-linux-concept-journey-linux-file-types-4cb622887331

https://linux.die.net/man/8/lsblk
https://man7.org/linux/man-pages/man2/mknod.2.html
https://medium.com/@boutnaru/the-linux-concept-journey-major-minor-numbers-56abe372482e
https://man7.org/linux/man-pages/man1/mknod.1.html
https://man7.org/linux/man-pages/man1/ls.1.html
https://medium.com/@boutnaru/the-linux-concept-journey-block-devices-f6f775852091
https://wiki.archlinux.org/title/Device_file
https://medium.com/@boutnaru/the-linux-concept-journey-linux-file-types-4cb622887331

Character Device File

As we know the philosophy of Linux is that “Everything is a file”. However, not all files are
created equally. A block device file is one of the supported file types by Linux385. The goal of a
“Character Device File” is to provide access for slow devices386.

Overall, character device files are flagged with “c” in the output of “ls -l”387. By default we can
find them in the “/dev” directory. Examples of such character device files are: keyboards, serial
ports, sound cards and joysticks388. Also, the source devices zero, random and urandom389 are
exposed using character device files -as shown in the screenshot below.

Lastly, we can create a block device file using the “mknod” command390, when using the
command we need to provide the major and minor numbers of the device391 - as shown in the
screenshot below. By the way, we can call the “mknod”/”mknodat” syscall392 in order to create a
character device file.

392 https://man7.org/linux/man-pages/man2/mknod.2.html
391 https://medium.com/@boutnaru/the-linux-concept-journey-major-minor-numbers-56abe372482e
390 https://man7.org/linux/man-pages/man1/mknod.1.html
389 https://linux.die.net/man/4/urandom
388 https://linux-kernel-labs.github.io/refs/heads/master/labs/device_drivers.html
387 https://man7.org/linux/man-pages/man1/ls.1.html
386 https://medium.com/@boutnaru/the-linux-concept-journey-character-devices-0c75aa70ceb2
385 https://medium.com/@boutnaru/the-linux-concept-journey-linux-file-types-4cb622887331

https://man7.org/linux/man-pages/man2/mknod.2.html
https://medium.com/@boutnaru/the-linux-concept-journey-major-minor-numbers-56abe372482e
https://man7.org/linux/man-pages/man1/mknod.1.html
https://linux.die.net/man/4/urandom
https://linux-kernel-labs.github.io/refs/heads/master/labs/device_drivers.html
https://man7.org/linux/man-pages/man1/ls.1.html
https://medium.com/@boutnaru/the-linux-concept-journey-character-devices-0c75aa70ceb2
https://medium.com/@boutnaru/the-linux-concept-journey-linux-file-types-4cb622887331

Pipe File (aka Named Pipe/FIFO)

As we know the philosophy of Linux is that “Everything is a file”. However, not all files are
created equally393. Among them we have a “pipe” file type (aka “FIFO”), which is a way for two
completely unrelated processes to communicate between each other. The content of the pipe
stays in memory until another connection which reads394 – as shown in the screenshot below.

Overall, we can create a FIFO (“named pipe”) using the “mkfifo” command395 or by leveraging
the “mkfifo” library function396 - as shown in the screenshot below.

Lastly, while using “ls -l”397 in order to list files in a directory, the pipe files are marked with “p”
in the output of the command - as shown in the screenshot below. By the way, it is called “FIFO”
because the first byte written is the first byte which is read.

397 https://man7.org/linux/man-pages/man1/ls.1.html
396 https://man7.org/linux/man-pages/man3/mkfifo.3.html
395 https://man7.org/linux/man-pages/man1/mkfifo.1.html
394 https://www.scaler.com/topics/linux-named-pipe/
393 https://medium.com/@boutnaru/the-linux-concept-journey-linux-file-types-4cb622887331

https://man7.org/linux/man-pages/man1/ls.1.html
https://man7.org/linux/man-pages/man3/mkfifo.3.html
https://man7.org/linux/man-pages/man1/mkfifo.1.html
https://www.scaler.com/topics/linux-named-pipe/
https://medium.com/@boutnaru/the-linux-concept-journey-linux-file-types-4cb622887331

/etc/nologin

The goal of the “/etc/nologin” file is to disallow users from logging to a system and notify it will
be unavailable for an extended period of time because of a system shutdown or routine
maintenance. Thus, in case a user tries to login the content of “/etc/nologin” is displayed to the
user and the login process is terminated. By the way, root/superuser logins are not affected398.

Overall, the “/etc/nologin” file is used by some versions of the “login” utility399, if it exists the
login of non-root users is prohibited400. Lastly, in case of a root user the login is performed but
the content of the file is still displayed by the “login” utility - as shown in the screenshot below
(taken from https://copy.sh/v86/?profile=archlinux). By the way, the “shutdown” utility401 also
creates the “/etc/nologin” file402.

402 https://unix.stackexchange.com/questions/17906/can-i-allow-a-non-root-user-to-log-in-when-etc-nologin-exists
401 https://linux.die.net/man/8/shutdown
400 https://github.com/mirror/busybox/blob/master/loginutils/login.c#L39
399 https://medium.com/@boutnaru/the-linux-process-journey-login-02b6d83ab6c5
398 https://docs.oracle.com/cd/E19683-01/806-4078/6jd6cjs3v/index.html

https://copy.sh/v86/?profile=archlinux
https://unix.stackexchange.com/questions/17906/can-i-allow-a-non-root-user-to-log-in-when-etc-nologin-exists
https://linux.die.net/man/8/shutdown
https://github.com/mirror/busybox/blob/master/loginutils/login.c#L39
https://medium.com/@boutnaru/the-linux-process-journey-login-02b6d83ab6c5
https://docs.oracle.com/cd/E19683-01/806-4078/6jd6cjs3v/index.html

/proc/kcore (Kernel ELF Core Dumper)

Basically, “/proc/kcore” is a file which is part of the “/proc” pseudo file-system which is used for
process information\system information\sysctl403. This fire represents the physical memory of the
entire system. The total length of the file is the size of the physical memory the system has plus
4 KiB404. Thus, using “/proc/kcore” and an unstripped binary of the kernel
(/usr/src/linux/vmlinux) we can leverage GDB to check the current state of the kernel.

Moreover, the “/proc/kcore” file is an ELF core dump file - as shown in the screenshot below
(taken from https://copy.sh/v86/?profile=archlinux). However, as opposed to generic core dump
which captures a single process “/proc/kcore” provides a real-time view of the system as a
whole. In case a read of the ELF header/program headers/ELF note is performed they are
generated on the fly and sent to the user405 - as shown in the screenshot below.

Lastly, the implementation of “/proc/kcore” can be found as part of “/fs/proc/kcore.c” in the
Linux source code406. Each time the a read access is performed on “kcore” the “read_kcore_iter”
function is called407. By the way, until kernel version 6.3.13 the “read_kcore” function was used
instead408.

408 https://elixir.bootlin.com/linux/v6.3.13/source/fs/proc/kcore.c
407 https://elixir.bootlin.com/linux/v6.10/source/fs/proc/kcore.c#L310
406 https://elixir.bootlin.com/linux/v6.10/source/fs/proc/kcore.c
405 https://schlafwandler.github.io/posts/dumping-/proc/kcore/
404 https://man7.org/linux/man-pages/man5/proc_kcore.5.html
403 https://man7.org/linux/man-pages/man5/proc.5.html

https://copy.sh/v86/?profile=archlinux
https://elixir.bootlin.com/linux/v6.3.13/source/fs/proc/kcore.c
https://elixir.bootlin.com/linux/v6.10/source/fs/proc/kcore.c#L310
https://elixir.bootlin.com/linux/v6.10/source/fs/proc/kcore.c
https://schlafwandler.github.io/posts/dumping-/proc/kcore/
https://man7.org/linux/man-pages/man5/proc_kcore.5.html
https://man7.org/linux/man-pages/man5/proc.5.html

Mem Device (/dev/mem)

In general, “/dev/mem” is a character device409 that we can use for reading/patching the memory
of the current system. Every byte access references a physical memory address - as shown in the
screenshot below. Thus, non-existent locations lead to errors. By default “/dev/mem” has a major
number “1” and a minor number of “1”410. We can use the “devmem2” utility for reading/writing
form/to any location in memory411. For supporting “/dev/mem” we need to set “DEVMEM=y” as
part of the kernel configuration before compiling it412.

Moreover, in order to limit “/dev/mem” we need to set the CONFIG_STRICT_DEVMEM
variable to “Y”. In case it is set to “N” user-processes with root access can access all memory of
the system (user-mode/kernel-mode). In case it is enabled and “IO_STRICT_DEVMEM=n”
“/dev/mem” allows user-space code to PCI space and BIOS code and data regions, which are
needed for DOS emulation and X413. We can check the source code of “/dev/mem” as part of the
Linux source code at “/driver/char/mem.c”414.

Lastly, if it is set to “IO_STRICT_DEVMEM=y” user-space access can only idle IO-memory
ranges (/proc/iomem). Due to that it can break traditional users of “/dev/mem” like legacy X,
DOS emulation and more415. We can think about “/dev/mem” as “/dev/kmem” as equal except
that the second uses virtual memory addresses while the first uses physical memory addresses.

415 https://cateee.net/lkddb/web-lkddb/IO_STRICT_DEVMEM.html
414 https://elixir.bootlin.com/linux/v6.11/source/drivers/char/mem.c
413 https://cateee.net/lkddb/web-lkddb/STRICT_DEVMEM.html
412 https://elixir.bootlin.com/linux/v6.11/source/drivers/char/Kconfig#L310
411 https://manpages.ubuntu.com/manpages/focal/en/man1/devmem2.1.html
410 https://man7.org/linux/man-pages/man4/kmem.4.html
409 https://medium.com/@boutnaru/the-linux-concept-journey-character-devices-0c75aa70ceb2

https://cateee.net/lkddb/web-lkddb/IO_STRICT_DEVMEM.html
https://elixir.bootlin.com/linux/v6.11/source/drivers/char/mem.c
https://cateee.net/lkddb/web-lkddb/STRICT_DEVMEM.html
https://elixir.bootlin.com/linux/v6.11/source/drivers/char/Kconfig#L310
https://manpages.ubuntu.com/manpages/focal/en/man1/devmem2.1.html
https://man7.org/linux/man-pages/man4/kmem.4.html
https://medium.com/@boutnaru/the-linux-concept-journey-character-devices-0c75aa70ceb2

Kmem Device (/dev/kmem)

As with the device file “/dev/mem”416 also “/dev/kmem” can be used in order to read/write to the
main memory of the system. The difference is that “/dev/kmem” performs operations on the
kernel virtual memory address space as opposed to “/dev/mem” which does that on the physical
address space of the kernel417.

Moreover, by default “/dev/mem” has a major number “1” and a minor number of “2”418. Also,
based on the Linux kernel documentation “/dev/kmem” is obsolete419 and has been replaced by
“/proc/kcore”420.

Lastly, until kernel version “5.12.19” we could set “DEVKMEM=y” while compiling the kernel
in order to add the support for the virtual device “/dev/kmem”421 - as shown below. Thus, the
code which creates the device and sets the relevant file operations422 is compiled as part of the
kernel (and later executed when the kernel is loaded). Since kernel version “5.13” it is not
supported anymore423.

423 https://elixir.bootlin.com/linux/v5.13/K/ident/CONFIG_DEVKMEM
422 https://elixir.bootlin.com/linux/v5.12.19/source/drivers/char/mem.c#L929
421 https://elixir.bootlin.com/linux/v5.12.19/source/drivers/char/Kconfig#L337
420 https://medium.com/@boutnaru/the-linux-concept-journey-proc-kcore-kernel-elf-core-dumper-0a1f90d1ad99
419 https://github.com/torvalds/linux/blob/master/Documentation/admin-guide/devices.txt
418 https://medium.com/@boutnaru/the-linux-concept-journey-major-minor-numbers-56abe372482e
417 https://linux.die.net/man/4/kmem
416 https://medium.com/@boutnaru/the-linux-concept-journey-dev-mem-ee697b16ed3d

https://elixir.bootlin.com/linux/v5.13/K/ident/CONFIG_DEVKMEM
https://elixir.bootlin.com/linux/v5.12.19/source/drivers/char/mem.c#L929
https://elixir.bootlin.com/linux/v5.12.19/source/drivers/char/Kconfig#L337
https://medium.com/@boutnaru/the-linux-concept-journey-proc-kcore-kernel-elf-core-dumper-0a1f90d1ad99
https://github.com/torvalds/linux/blob/master/Documentation/admin-guide/devices.txt
https://medium.com/@boutnaru/the-linux-concept-journey-major-minor-numbers-56abe372482e
https://linux.die.net/man/4/kmem
https://medium.com/@boutnaru/the-linux-concept-journey-dev-mem-ee697b16ed3d

chroot (Change Root Directory)
chroot is a Linux system call which allows changing the root directory of a calling process to a
specific path. After doing so the directory will be used for the path names beginning with “/”.
The changed root directory is inherited to all children of the calling process. By the way, only
privileged processes can call “chroot” - root or with “CAP_SYS_CHROOT” in its user
namespace424.

Moreover, there are different use case (which are not joust security related) for using chroot like:
rebuilding initramfs image, reinstalling a bootloader, upgrading/downgrading a package and
more425. By the way, we can use the “chroot” CLI tool (and not the system call) for preventing
access outside the new root directory426 - as shown in the screenshot below. It is recommended to
go over the implementation of the “chroot” syscall427.

 Lastly, we can think about “chroot” as a mitigation/hardening feature (and not a security feature)
due to the fact there are specific ways to bypass it428. We can find it in use when creating
sandboxed environments429 - they are better solutions than just using “chroot” as described in
future writeups (namespaces and seccomp as an example). An example for that is “wu-ftpd”
which can run in a chrooted environment for anonymous users430.

430 https://www.ariadne.ac.uk/issue/20/unix/
429 https://www.lenovo.com/us/en/glossary/what-is-chroot/
428 https://www.redhat.com/en/blog/chroot-security-feature
427 https://elixir.bootlin.com/linux/v6.5.5/source/fs/open.c#L593
426 https://linux.die.net/man/1/chroot
425 https://wiki.archlinux.org/title/chroot
424 https://man7.org/linux/man-pages/man2/chroot.2.html

https://www.ariadne.ac.uk/issue/20/unix/
https://www.lenovo.com/us/en/glossary/what-is-chroot/
https://www.redhat.com/en/blog/chroot-security-feature
https://elixir.bootlin.com/linux/v6.5.5/source/fs/open.c#L593
https://linux.die.net/man/1/chroot
https://wiki.archlinux.org/title/chroot
https://man7.org/linux/man-pages/man2/chroot.2.html

Namespaces
The goal of namespaces is to create an illusion that resources seen by a process are the only
resources the system has. Basically we can think about namespace as an isolation technology for
processes which are sharing the same kernel (versus processes running with different kernels
such as two VMs on the same hypervisor). Namespaces were first introduced as part of kernel
2.4.19. By the way, namespaces are one of the basic building blocks of containers.

Thus, if we have two different processes (that are part of different namespaces) a change made
by one of them on a resource (that is part of one of the namespaces) is not visible to the second
process (unless there is a bug/security vulnerability). More information about namespace can be
found using “man 7 namespaces”431.

Moreover, in order to use namespaces we can leverage different syscalls: clone, setns, unshare
and ioctl_ns. When using “clone” (“man 2 clone”) to create new processes we can pass different
flags that will create new namespaces that we want the new process to be part of. With “setns”
(“man 2 setns”) we can add a process to an existing namespace. By using “unshre” (“man 2
unshare” we can also move a process to a new namespace (it is different from clone because it is
not before the creation of the process). Finally, with “ioctl_ns” (“man 2 ioctl_ns”) to perform
operations such as discovery regarding namespaces.

It is important to know that, today there are 8 different types of namespaces: User, PID, UTS
(hostname), Time, IPC, Network, Cgroup and Mount. I am going to elaborate on each and one of
them in a separate writeup. Also, there is a suggestion to add a syslog432 namespace which was
not merged to the kernel until now.

We can use “/proc” (“man 5 proc”) to query information about namespaces of the running
process. The information about namespaces is stored under “/proc/[pid]/ns” - as shown in the
screenshot below (taken using copy.sh). Every link shown in the screenshot corresponds to a
namespace. The two links ending with “for_children” represent the information about the
namespaces of the child processes created by the process.

432 https://lwn.net/Articles/562389
431 https://man7.org/linux/man-pages/man7/namespaces.7.html

https://lwn.net/Articles/562389/
https://man7.org/linux/man-pages/man7/namespaces.7.html

PID namespace
The goal of PID namespaces is to isolate the “Process ID number space”. Thus, different
processes in distinct PID namespaces can have the same PID. When a new PID namespace is
started the first process gets PID 1 (so we don’t have a new swapper433). In order to use PID
namespaces we have to ensure that our kernel was compiled with “CONFIG_PID_NS”
enabled434.

Moreover, PID namespace can also be nested , since kernel 3.7 the maximum nesting depth is
32. A process is visible to every other process in the same PID namespace or any direct ancestor
PID namespace. The opposite way does not work, a process in a child PID namespace can’t see a
process in a parent PID namespace435.

Also, “/proc” will show only processes which are visible in the PID namespace of the process
that executed the “mount” operation for “/proc”436. If we want to see the number of the last pid
that was allocated in our PID namespace we can use “/proc/sys/kernel/ns_last_pid”437 - as you
can see in the screenshot below.

Lastly, a nice fact to know is that when we pass a pid over a unix domain socket to a process
which belongs to another PID namespace, it is resolved to the correct value in the receiving
process’ PID namespace438.

438 https://man7.org/linux/man-pages/man7/pid_namespaces.7.html
437 https://www.kernel.org/doc/html/latest/admin-guide/sysctl/kernel.html#ns-last-pid
436 https://lwn.net/Articles/531419/
435 https://www.schutzwerk.com/en/blog/linux-container-namespaces03-pid-net/
434 https://man7.org/linux/man-pages/man7/pid_namespaces.7.html
433 https://medium.com/@boutnaru/the-linux-process-journey-pid-0-swapper-7868d1131316

https://man7.org/linux/man-pages/man7/pid_namespaces.7.html
https://www.kernel.org/doc/html/latest/admin-guide/sysctl/kernel.html#ns-last-pid
https://lwn.net/Articles/531419/
https://www.schutzwerk.com/en/blog/linux-container-namespaces03-pid-net/
https://man7.org/linux/man-pages/man7/pid_namespaces.7.html
https://medium.com/@boutnaru/the-linux-process-journey-pid-0-swapper-7868d1131316

UTS namespace
In the first part of the series we have talked generally about what namespaces are and what we
can do with them. Now we are going to deep dive to the different namespaces starting with UTS
(Unix Time Sharing).

By using UTS namespaces we can separate/isolate/segregate the hostname and the NIS (Network
Information Service) domain of a Linux system. Just to clarify, NIS is a directory service (it has
some similarities to Microsoft’s Active Directory) that was created by Sun and later was
discontinued by Oracle . Thus, UTS today is focused mainly on separating hostname.

In order to get the information described above we can use the following syscalls: uname (“man
2 uname”), gethostname (“man 2 gethostname”) and getdomainname (“man 2 getdomainname”)
- we also have a parallel set syscall for each one of them. For supporting UTS namespaces the
kernel should be compiled with “CONFIG_UTS_NS”439.

Container engines (such as docker) use different namespaces to isolate between different
containers, even if they were created from the same image - as shown in the screenshot below.

439 https://github.com/torvalds/linux/blob/master/include/linux/utsname.h#L32

https://github.com/torvalds/linux/blob/master/include/linux/utsname.h#L32

IPC namespace
The goal of the IPC namespace is to isolate between different IPC resources like message
queues, semaphores and shared memory. We are talking both on System V IPC objects440 and
POSIX message queues441. In order to use “IPC namespaces” the kernel should be compiled with
CONFIG_IPC_NS enabled442.

We can use “/proc” in order to retrieve information about the different IPC objects in an “IPC
namespace”. Regarding POSIX message queues we have “/proc/sys/fs/mqueue”. In case of
System V IPC objects we have “/proc/sysvipc” and specific file in “/proc/sys/kernel” (msgmax,
msgmnb, msgmni, sem, shmall, shmmax, shmmni, and shm_rmid_forced). For more information
I suggest reading proc’s man page443.

Lastly, all IPC objects created in an “IPC namespace” are visible only to all processes/tasks that
are members of the same namespace - as shown in the screenshot below. In the demonstration
the namespace was created using “unshare”444, the IPC resource was created using “ipcmk”445
and the show information about System V IPC resources using “ipcs”446.

446 https://man7.org/linux/man-pages/man1/ipcs.1.html
445 https://man7.org/linux/man-pages/man1/ipcmk.1.html
444 https://man7.org/linux/man-pages/man1/unshare.1.html
443 https://man7.org/linux/man-pages/man5/proc.5.html
442 https://man7.org/linux/man-pages/man7/ipc_namespaces.7.html
441 https://man7.org/linux/man-pages/man7/mq_overview.7.html

440 https://man7.org/linux/man-pages/man7/sysvipc.7.html

https://man7.org/linux/man-pages/man1/ipcs.1.html
https://man7.org/linux/man-pages/man1/ipcmk.1.html
https://man7.org/linux/man-pages/man1/unshare.1.html
https://man7.org/linux/man-pages/man5/proc.5.html
https://man7.org/linux/man-pages/man7/ipc_namespaces.7.html
https://man7.org/linux/man-pages/man7/mq_overview.7.html
https://man7.org/linux/man-pages/man7/sysvipc.7.html

Time namespace
By using time namespaces we can separate/isolate/segregate and thus virtualize the values of two
system clocks447. We are talking about “CLOCK_MONOTONIC” and “CLOCK_BOOTTIME”.

“CLOCK_MONOTONIC” goal is to represent an absolute elapsed wall-clock time since some
arbitrary, fixed point in the past. It is important to understand that it isn't affected by changes in
the system time-of-day clock. As opposed to “CLOCK_REALTIME” which can change based
on configurations/NTP (Network Time Protocol) data448. Moreover, “CLOCK_MONOTONIC”
does not measure time spent during suspend. If we want a monotonic clock that is running during
suspend we need to use “CLOCK_BOOTTIME”449.

Thus, all the processes in the same time namespace share the same values of the clocks explained
above. Due to that, it affect the results of the following syscalls: timer_settime (“man 2
timer_settime”, clock_gettime (“man 2 clock_gettime”), clock_nanosleep (“man 2
clock_nanosleep”), timerfd_settime (“man 2 timerfd_settime”). Also, the content returned from
“/proc/uptime” is affected.

In order to create a new time namespace we have to use the unshare syscall (“man 2 unshare”)
and pass the “CLONE_NEWTIME” flag. You can see an example of that using the “unshare” cli
tool (“man 1 unshare”) in the screenshot below. In order to see the difference between the initial
time namespace and the process’ time namespace we can use “/proc/[PID]/timens_offsets” also
shown in the screenshot below.

449 https://linux.die.net/man/2/clock_gettime
448 https://stackoverflow.com/questions/3523442/difference-between-clock-realtime-and-clock-monotonic
447 https://man7.org/linux/man-pages/man7/time_namespaces.7.html

https://linux.die.net/man/2/clock_gettime
https://stackoverflow.com/questions/3523442/difference-between-clock-realtime-and-clock-monotonic
https://man7.org/linux/man-pages/man7/time_namespaces.7.html

Network namespace

First, in order for the kernel to support network namespaces we need to compile the kernel with
“CONFIG_NET_NS” enabled. Overall, network namespaces can separate/isolate/segregate
between the different system resources which are associated with networking under Linux.
Among those resources are: firewall rules, routing tables (IP), IPv4 and IPv6 protocol stacks,
sockets, different directories related to the networking subsystem (like: “/proc/[PID]/net”,
“/proc/sys/net”, “/sys/class/net” and more), etc450.

By the way, unix domain sockets are also isolated using network namespaces (“man 7 unix”). It
is important to understand that a physical network device can exist in one network namespace at
a time (singleton). In case the last process in a network namespace returns/exits, Linux frees the
namespace which moves the physical network device to the initial network namespace.

Moreover, in case we want to create a bridge to a network device which is part of a different
namespace we can use a virtual network device. It can create tunnels between network
namespaces451.

Lastly, you can see an example of creating a network namespace in the screenshot below. As you
can see an iptables rule is created but it is not relevant to the newly created network namespace.

451 https://man7.org/linux/man-pages/man4/veth.4.html
450 https://man7.org/linux/man-pages/man7/network_namespaces.7.html

https://man7.org/linux/man-pages/man4/veth.4.html
https://man7.org/linux/man-pages/man7/network_namespaces.7.html

Mount Namespace

The goal of mount namespaces is to provide isolation regarding the list of mounts as seen by the
process/tasks in each namespace. By doing so different processes/tasks that belong to different
mount namespaces will see distinct directories hierarchies452.

Using “/proc” we can inspect the mounting points visible for specific processes using
“/proc/[PID]/mounts, “/proc/[PID]/mountinfo” and “/proc/[PID]/mountstats”453. You can see the
different outputs when reading the data in different mount namespace - as seen in the screenshot
below.

After the implementation of mount namespaces the isolation they have created a problem. Think
about a case when we add some device that we want to be visible on every namespace, for that
we need to execute a “mount” command on each namespace. To overcome this the shared
subtree feature was introduced in kernel 2.6.15454.

By using shared subtrees we can propagate mount/unmount events between distinct mount
namespaces455. It is designed to work between mounts that are members of the same peer group.
Thus, “peer group” is defined as a group of vfsmounts that propagate events between each
other456. Also, we can control the propagation using the mount system call by passing one of the
following “mountflags”457: MS_SHARED, MS_PRIVATE, MS_SLAVE, or
MS_UNBINDABLE458. For more information about shared subtrees I suggest reading the kernel
documentation459.

459 https://www.kernel.org/doc/Documentation/filesystems/sharedsubtree.txt
458 https://man7.org/linux/man-pages/man2/mount.2.html
457 https://hechao.li/2020/06/09/Mini-Container-Series-Part-1-Filesystem-Isolation/
456 https://www.redhat.com/sysadmin/mount-namespaces
455 https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/storage_administration_guide/sect-using_the_mount_command-mounting-bind
454 https://lwn.net/Articles/689856/
453 https://man7.org/linux/man-pages/man5/proc.5.html
452 https://man7.org/linux/man-pages/man7/mount_namespaces.7.html

https://www.kernel.org/doc/Documentation/filesystems/sharedsubtree.txt
https://man7.org/linux/man-pages/man2/mount.2.html
https://hechao.li/2020/06/09/Mini-Container-Series-Part-1-Filesystem-Isolation/
https://www.redhat.com/sysadmin/mount-namespaces
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/storage_administration_guide/sect-using_the_mount_command-mounting-bind
https://lwn.net/Articles/689856/
https://man7.org/linux/man-pages/man5/proc.5.html
https://man7.org/linux/man-pages/man7/mount_namespaces.7.html

cgroup namespace
As a reminder, “cgroups” is a feature of the Linux kernel used for limiting system resources
(CPU/Memory/IO) of specific processes organized in hierarchical groups460. For creating a new
“cgroup namespace” we can use the “CLONE_NEWCGROUP” flag while calling the “clone”461
syscall. It is used for isolating the “cgroup” root directory462.

Overall, “cgroup namespaces” virtualize the view of a process's cgroups. We can also get
information about the cgroup namespace per process/task from the proc filesystem:
“/proc/<PID>/cgroup” and “/proc/<PID>/mountinfo”. In order to use cgroup namespaces the
kernel should be compiled with “CONFIG_CGROUPS” enabled463.

Lastly, the creation of a new cgroup namespace can be done using the “clone”464 syscall and\or
the “unshare”465 syscall by providing the “CLONE_NEWCGROUP” flag (since Linux 4.6). For
doing so we need the “CAP_SYS_ADMIN” capability466. This can be done also with the
“unshare” utility467 by leveraging the “-C” switch - as shown in the screenshot below (taken
using https://copy.sh/v86/?profile=archlinux).

467 https://man7.org/linux/man-pages/man1/unshare.1.html
466 https://man7.org/linux/man-pages/man7/capabilities.7.html
465 https://man7.org/linux/man-pages/man2/unshare.2.html
464 https://man7.org/linux/man-pages/man2/clone.2.html
463 https://man7.org/linux/man-pages/man7/cgroup_namespaces.7.html
462 https://man7.org/linux/man-pages/man7/namespaces.7.html
461 https://man7.org/linux/man-pages/man2/clone.2.html
460 https://medium.com/@boutnaru/linux-cgroups-control-groups-part-1-358c636ffde0

https://copy.sh/v86/?profile=archlinux
https://man7.org/linux/man-pages/man1/unshare.1.html
https://man7.org/linux/man-pages/man7/capabilities.7.html
https://man7.org/linux/man-pages/man2/unshare.2.html
https://man7.org/linux/man-pages/man2/clone.2.html
https://man7.org/linux/man-pages/man7/cgroup_namespaces.7.html
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://man7.org/linux/man-pages/man2/clone.2.html
https://medium.com/@boutnaru/linux-cgroups-control-groups-part-1-358c636ffde0

User Namespace

In general, “User Namespace” is a feature of the Linux kernel which allows isolation of
group/user identifiers mapping. By using this feature every user namespace has its own set of
group/user identifiers. This means that processes/threads (tasks in Linux's lingo) executing in
different namespaces can have different privileges/permissions even if their user/group ID is the
same number. Due to that, this feature is super relevant for container environments468.

Moreover, User namespace is used for isolating identifiers and attributes which are
security-related. Among those are: user/group IDs, root directory, keyring469 and capabilities470.
Thus, a process can be privileged inside a user namespace but unprivileged outside the
namespace471. We can check out the user namespace of a specific process using
“/proc/[PID]/ns/user” and also the uid/gid maps using “/proc/[PID]/uid_map” or
“/proc/[PID]/gid_map”472 - an example of usage is shown in the screenshot below (taken from
copy.sh).

Lastly, we can use the “unshare” system call473 or the “unshare” utility474 for running processes in
a new user namespace. In the screenshot below we can see an example of that by using the
“unshare” utility. Also, we can leverage the “clone”475 or “setns”476 syscalls for creating/joining a
user namespace. We can also check the source code of the Linux kernel which implements user
namespaces477.

477 https://elixir.bootlin.com/linux/v6.9/source/kernel/user_namespace.c
476 https://man7.org/linux/man-pages/man2/setns.2.html
475 https://man7.org/linux/man-pages/man2/clone.2.html
474 https://man7.org/linux/man-pages/man1/unshare.1.html
473 https://man7.org/linux/man-pages/man2/unshare.2.html
472 https://man7.org/linux/man-pages/man5/proc.5.html
471 https://man7.org/linux/man-pages/man7/user_namespaces.7.html
470 https://medium.com/@boutnaru/linux-security-capabilities-part-1-63c6d2ceb8bf
469 https://medium.com/@boutnaru/linux-keyrings-d4ad07c091b3
468 https://book.hacktricks.xyz/linux-hardening/privilege-escalation/docker-security/namespaces/user-namespace

https://elixir.bootlin.com/linux/v6.9/source/kernel/user_namespace.c
https://man7.org/linux/man-pages/man2/setns.2.html
https://man7.org/linux/man-pages/man2/clone.2.html
https://man7.org/linux/man-pages/man1/unshare.1.html
https://man7.org/linux/man-pages/man2/unshare.2.html
https://man7.org/linux/man-pages/man5/proc.5.html
https://man7.org/linux/man-pages/man7/user_namespaces.7.html
https://medium.com/@boutnaru/linux-security-capabilities-part-1-63c6d2ceb8bf
https://medium.com/@boutnaru/linux-keyrings-d4ad07c091b3
https://book.hacktricks.xyz/linux-hardening/privilege-escalation/docker-security/namespaces/user-namespace

	Introduction
	
	The Auxiliary Vector (AUXV)
	command not found
	Out-of-Memory Killer (OOM killer)
	Why doesn’t “ltrace” work on new versions of Ubuntu?
	
	Syscalls (System Calls)
	
	vDSO (Virtual Dynamic Shared Object)
	
	Calling syscalls from Python
	Syscalls’ Naming Rule: What if a syscall’s name starts with “f”?
	Syscalls’ Naming Rule: What if a syscall’s name starts with “l”?
	
	RCU (Read Copy Update)
	cgroups (Control Groups)
	Package Managers
	What is an ELF (Executable and Linkable Format) ?
	The ELF (Executable and Linkable Format) Header
	File System Hierarchy in Linux
	/boot/config-$(uname-r)
	/proc/config.gz
	
	What is an inode?
	Why is removing a file not dependent on the file’s permissions?
	VFS (Virtual File System)
	tmpfs (Temporary Filesystem)
	
	ramfs (Random Access Memory Filesystem)
	​
	Buddy Memory Allocation
	DeviceTree
	How can we recover a deleted executable of a running application?
	
	Process Group
	
	<Major:Minor> Numbers
	
	Monolithic Kernel
	Loadable Kernel Module (LKM)
	
	Builtin Kernel Modules
	
	Signals
	Real Time Signals
	
	Memory Management - Introduction
	
	Hard Link
	
	Soft Link
	BusyBox
	Character Devices
	Block Devices
	
	Null Device (/dev/null)
	Zero Device (/dev/zero)
	
	Loop Device
	
	Unnamed Pipe (Anonymous Pipe)
	
	Processes & Threads
	Why never trust only the source code? And verify the created binary (Compiler Optimizations)
	
	D-BUS (Desktop Bus)
	
	
	
	GNU Toolchain
	KVM (Kernel-based Virtual Machine)
	
	Kconfig
	
	Makefile
	
	Page Faults
	
	Session
	
	IPC Methods Between Kernel and User Space
	
	Netlink
	Unix Domain Sockets
	IOCTL (Input/Output Control)
	
	dnotify (Directory Notification)
	
	inotify (Inode Notification)
	Limitations When Using inofity (Inode Notification)
	
	fanotify (Inode Notification)
	
	fsnotify (File System Notification)
	Xen Hypervisor
	Xorg (X Windows System)
	
	Xfce (Desktop Environment)
	
	Zombie Processes
	Uninterruptible Process
	
	Linux File Types
	
	Regular File
	Directory File
	Link File (aka Symbolic Link)
	Socket File
	Block Device File
	Character Device File
	Pipe File (aka Named Pipe/FIFO)
	/etc/nologin
	
	/proc/kcore (Kernel ELF Core Dumper)
	
	Mem Device (/dev/mem)
	Kmem Device (/dev/kmem)
	chroot (Change Root Directory)
	
	Namespaces
	
	PID namespace
	
	UTS namespace
	
	IPC namespace
	Time namespace
	Network namespace
	
	Mount Namespace
	User Namespace

