
The Android ​
Concept Journey

Version 1.0
May-2025

By Dr. Shlomi Boutnaru

Created using Craiyon, AI Image Generator

https://www.craiyon.com/

Introduction..3
AOSP (Android Open Source Project)...4
OHA (Open Handset Alliance).. 5
Android Auto..6
Android Automotive (AAOS).. 7
API Level (Application Programming Interface Level)...8
Android Emulator.. 9
AVD (Android Virtual Device)... 10
Activity..11
Back Stack..12
Application Sandbox...13
Binder... 14

Introduction
When starting to learn Android I believe that they are basic concepts that everyone needs to
know about. Because of that I have decided to write a series of short writeups aimed at providing
a basic explanation for fundamental concepts which are part of the Android operating system.

Overall, I wanted to create something that will improve the overall knowledge of Android in
writeups that can be read in 1-3 mins. I hope you are going to enjoy the ride.

Lastly, you can follow me on twitter - @boutnaru (https://twitter.com/boutnaru). Also, you can
read my other writeups on medium - https://medium.com/@boutnaru. Lastly, You can find my
free eBooks at https://TheLearningJourneyEbooks.com.

Lets GO!!!!!!

https://twitter.com/boutnaru
https://medium.com/@boutnaru
https://thelearningjourneyebooks.com

AOSP (Android Open Source Project)
 AOSP (Android Open Source Project) is the repository of source code and the foundation which
maintains it. ASOP is responsible for the core of the Android operating system. Thus, by
leveraging AOSP everyone can download and create their own OS based on Android1. Examples
for such cases are: Amazon’s Fire OS2 and LineageOS3 - as shown in the diagram below4.

Overall, the source code of the Android operating system is managed using a collection of Git
repositories hosted by Google. Thus, we can use the repo client for downloading (“repo sync -c
-j16”, where 16 is number of threads for faster completion) the Android source code5. Since
March 2025 the latest release branch will always be referenced by the new
“android-latest-release” manifest, which can be used directly with repo6.

Lastly, we can use the “Android Code Search” portal for searching for code and files across the
entire source code7. Although, Android is free and open source (mostly licensed under the
Apache License) most devices are running a proprietary version of Android and with closed
software preinstalled8.

8 https://en.wikipedia.org/wiki/Android_(operating_system)
7 https://cs.android.com/android/platform/superproject/main
6 https://source.android.com/docs/whatsnew/site-updates#aosp-changes
5 https://source.android.com/docs/setup/download#initialize_the_repo_client
4 https://telegra.ph/Android-open-source-project-08-14
3 https://lineageos.org/
2 https://developer.amazon.com/docs/fire-tv/fire-os-overview.html
1 https://www.techtarget.com/searchmobilecomputing/definition/Android-Open-Source-Project-AOSP

https://www.techtarget.com/searchmobilecomputing/definition/Android-OS
https://en.wikipedia.org/wiki/Android_(operating_system)
https://cs.android.com/android/platform/superproject/main
https://source.android.com/docs/whatsnew/site-updates#aosp-changes
https://source.android.com/docs/setup/download#initialize_the_repo_client
https://telegra.ph/Android-open-source-project-08-14
https://lineageos.org/
https://developer.amazon.com/docs/fire-tv/fire-os-overview.html
https://www.techtarget.com/searchmobilecomputing/definition/Android-Open-Source-Project-AOSP

OHA (Open Handset Alliance)
OHA (Open Handset Alliance) is a group of 84 technology and mobile companies who have
come together to accelerate innovation in mobile. Their goal is to offer consumers a richer, less
expensive, and better mobile experience. This organization is behind the development of the
Android operating system9.

Overall, OTH was established in 2007 and is led by Google. We can cluster the companies which
are part OTH to the following groups: network operators (like T-Mobile, China Mobile and
Sprint Nextel), software developers (like eBay, NXP, Google and PacketVideo), device
manufacturers (like HTC, LG, Samsung, ZTE, Dell and Lenovo), component manufacturers (like
ARM, Freescale Semiconductor, Texas Instruments and Nvidia) and others (like Flex Comix and
Borqs). By the way, OHA members are not allowed to produce devices which are based on forks
of the Android OS10 - logos of some of the member companies are shown below11.

Lastly, the companies which are part of OTH have allocated significant engineering resources to
improve Android and bring Android devices to market. The companies that have invested in
Android have done so because they believe an open platform is necessary. Thus, a group of
organizations with shared needs has pooled resources to collaborate on a single implementation
of a shared product. The objective is a shared product that each contributor can tailor and
customize12.

12 https://source.android.com/docs/setup/about
11 https://slideplayer.com/slide/11753561/
10 https://en.wikipedia.org/wiki/Open_Handset_Alliance
9 https://www.openhandsetalliance.com/

https://source.android.com/docs/setup/about
https://slideplayer.com/slide/11753561/
https://en.wikipedia.org/wiki/Open_Handset_Alliance
https://www.openhandsetalliance.com/

Android Auto
“Android Auto” allows us to use our own applications on the car display while we connect our
mobile phone to the infotainment system - as shown below13. “Android Auto” is supported on
over 500 car’s models such as: Audi (2016+), Aston Martin (2018+), Mercedes-Benz (2017+),
Mitsubishi (2016+), Lamborghini (2016+), Lexus (2020+), RAM (2018+), Honda (2016+) and
more14.

Overall, “Android Auto” lets us use our voice to perform operations without the need of
installing\downloading any third party software. For it to work we need an Android 8.0+, data
plan and car/stereo compatible with Android auto. For connecting an Android device we can use
a USB cable or even a wireless connection if the device and car supports that15.

Lastly, it is important to understand that “Android Auto” and “Android Automotive” are two
different things16. Thus, “Android Auto” is a smart driving companion helping us stay focused
and entertained with the Google Assistant. It is designed for making it easier to use apps while
we are on the road17.

17 https://play.google.com/store/apps/details?id=com.google.android.projection.gearhead&hl=en
16 https://source.android.com/docs/automotive/start/what_automotive
15 https://www.android.com/auto/#auto-feature-carousel
14 https://www.android.com/auto/compatibility/vehicles/
13 https://www.trendradars.com/channels/article-923412-how-to-take-screenshots-on-android-auto/

https://play.google.com/store/apps/details?id=com.google.android.projection.gearhead&hl=en
https://source.android.com/docs/automotive/start/what_automotive
https://www.android.com/auto/#auto-feature-carousel
https://www.android.com/auto/compatibility/vehicles/
https://www.trendradars.com/channels/article-923412-how-to-take-screenshots-on-android-auto/

Android Automotive (AAOS)
“Android Automotive” (AAOS) is an open-source operating system based on Android which is
designed for vehicle dashboards (in-vehicle infotainment system aka IVI systems) - as shown
below18. AAOS was developed by Google and Intel in conjunction with car manufacturers like
Audi and Volvo (introduced in 2017). The goal is to create an operating system codebase for
vehicle manufacturers to develop their own version\distribution for handling infotainment taks
(messaging, navigation, music playback, controlling air-condition and more)19.

Overall, as opposed to “Android Auto”20 AAOS is a full operating system executing on the car
itself without the need for a smartphone in order to work. It also supports applications built for
Android as well those built for “Android Auto”. Automotive OEMs can also license and
integrate GAS (Google Automotive Services) which is similar to GMS (Google Mobile Services)
on smartphones. GAS provides applications and services like “Google Maps” and “Google
Assistant”21.

Lastly, “Android Automotive” and “Android Auto” are two distinct products. AAOS is an
operating system while “Android Auto” is an application. Thus, “Apple CarPlay” is a direct
competitor of “Android Auto” and not AAOS. “Android Automotive” is included in the AOSP22.
Hence, using AAOS provides different benefits for car manufactures like (not limited to): it’s
familiar, flexible and backed by Google23.

23 https://www.withintent.com/blog/choosing-android-automotive/
22 https://medium.com/@boutnaru/the-android-concept-journey-aosp-android-open-source-project-deca886302ff
21 https://source.android.com/docs/automotive/start/what_automotive
20 https://medium.com/@boutnaru/the-android-concept-journey-android-auto-4d71fd9d03f8
19 https://en.wikipedia.org/wiki/Android_Automotive
18 https://www.androidworld.it/aggiornamenti/android-automotive-os-12l.html

https://www.withintent.com/blog/choosing-android-automotive/
https://medium.com/@boutnaru/the-android-concept-journey-aosp-android-open-source-project-deca886302ff
https://source.android.com/docs/automotive/start/what_automotive
https://medium.com/@boutnaru/the-android-concept-journey-android-auto-4d71fd9d03f8
https://en.wikipedia.org/wiki/Android_Automotive
https://www.androidworld.it/aggiornamenti/android-automotive-os-12l.html

API Level (Application Programming Interface Level)
An API Level (Application Programming Interface Level) is basically an integer number. This
number uniquely identifies the framework API (packages/classes/etc) revision offered by a
specific version of the Android platform. We use the API level for describing the minimum
(minSdk)\maximum API revision that an application requires\allows. Hence, Android can install
only supported applications and block others24.

Overall, it is important to understand that specific packages\classes\functions can be available
only from a specific API level. For example NdkBinder and Native MIDI API (AMidi) are
available only from API Level 29 (Android 10) or later25. Each API level is relevant for a
specific version of Android - as shown in the parietal table below26.

Lastly, in the case of Android (which is not true for other environments) the SDK version is
practically a synonym to API level - also shown in the table below. Thus, every Android
application specifies a targetSdkVersion (aka the target API level) in the manifest file. This is
done to provide a context of how the developer expects the application to execute27.

27 https://support.google.com/googleplay/android-developer/answer/11926878?hl=en
26 https://apilevels.com/
25 https://atsushieno.github.io/2022/11/12/ndk-conditional-code-per-api-level.html
24 https://www.dre.vanderbilt.edu/~schmidt/android/android-4.0/out/target/common/docs/doc-comment-check/guide/appendix/api-levels.html

https://support.google.com/googleplay/android-developer/answer/11926878?hl=en
https://apilevels.com/
https://atsushieno.github.io/2022/11/12/ndk-conditional-code-per-api-level.html
https://www.dre.vanderbilt.edu/~schmidt/android/android-4.0/out/target/common/docs/doc-comment-check/guide/appendix/api-levels.html

Android Emulator
The goal of an Android emulator is to simulate Android devices (mobile phone/tablet/watch/etc)
on a personal computer. By doing so we can test our application on various devices\API levels28
without the need for dedicated physical devices - an example is shown in the screenshot below29.

Overall, we can summarize the flow of working with an emulator to the following phases. First,
verifying system requirements (for best experience at least 16 GB RAM, 16 GB disk space and
64-bit version of Windows 10+\MacOS 12+\Linux\ChromeOS). Second, creating an AVD
(Android Virtual Device) configuration - more on that in a future writeup. Third, run our app on
the emulator by pushing it manually or from the IDE (like “Android Studio”) - also shown
below. Fourth, navigate and use the emulator30.

Lastly, it is import to know that there are multiple emulators for Android such as: “BlueStacks”,
“Android Studio”, “Bliss OS”, “GameLoop”, “PrimeOS”, “NoxPlayer”, “MeMUPlay” and
“LDPlayer 9”31. Beside emulators we also have Android VM (Virtual Machines) but more on
those in future writeups.

31 https://www.androidauthority.com/best-android-emulators-for-pc-655308/
30 https://developer.android.com/studio/run/emulator
29 https://serwer2311392.home.pl/Simulador-Android/emulator-build-and-run-your-project-on-android-emulator-1629738/
28 https://medium.com/@boutnaru/the-android-concept-journey-api-level-application-programming-interface-level-df4cee3f85c9

https://www.androidauthority.com/best-android-emulators-for-pc-655308/
https://developer.android.com/studio/run/emulator
https://serwer2311392.home.pl/Simulador-Android/emulator-build-and-run-your-project-on-android-emulator-1629738/
https://medium.com/@boutnaru/the-android-concept-journey-api-level-application-programming-interface-level-df4cee3f85c9

AVD (Android Virtual Device)
The goal of AVD (Android Virtual Device) is to provide configuration which defines the
characteristics of an Android based device (phone\tablet\Wear OS\Android TV\Automotive OS).
This is done in order to simulate the device using the “Android Emulator”32.

Overall, We can create an AVD using the “Device Manager” launched from “Android Studio”
(View -> Tool Windows -> Device Manager) - it can also be launched\used from other IDEs. It is
important to know that an AVD consists of: hardware profile, system image, storage area (user
data, installed apps and emulated SD card), skin (appearance of the device) and more. By the
way, beside the predefined hardware profiles for common devices which are part of the device
manager we can also create our own - as shown in the screenshot below33.

Lastly, we can create an AVD for a specific Android version. Also, we can simulate different
network speeds/latency as part of our AVD. Due to the fact everything is virtual we can of course
create multiple AVDs and even run them if we have sufficient resources34.

34 https://www.sitepoint.com/beginning-andoid-create-an-android-virtual-device/
33 https://developer.android.com/studio/run/managing-avds
32 https://medium.com/@boutnaru/the-android-concept-journey-android-emulator-2e53cc3a6d26

https://www.sitepoint.com/beginning-andoid-create-an-android-virtual-device/
https://developer.android.com/studio/run/managing-avds
https://medium.com/@boutnaru/the-android-concept-journey-android-emulator-2e53cc3a6d26

Activity
The Android application model is based on activities, which are launched and put together as one
unit. As opposed to other executable formats (like ELF and PE) an APK (Android Package) file
does not have a “main()”. Thus, the Android system calls code in a specific Activity (which is
defined in the manifest file as the “entry point” of the application). Also, an activity provides the
windows where the application draws its user interface35 - as shown in the screenshot below
taken from the “Android Studio” IDE36.

Overall, during the lifetime of the application activities change their state. In case of a change
state one of the following callback is triggered: “onCreate()”, “onStart()”, “onRestart()”,
“onResume()”, “onPause()”, “onStop()” and “onDestroy()”37 - more information on each in
future writeups.

Lastly, using activities help in creating user flows and saving the context in case the process is
killed. Thus, when the user returns to the activities their previous state can be restored38. An
activity as a subclass of the “Activity” class39.

39 https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/app/Activity.java
38 https://developer.android.com/guide/components/fundamentals
37 https://www.geeksforgeeks.org/activity-state-changes-in-android-with-example/
36 https://www.includehelp.com/android/use-full-screen-activity-in-android-studio.aspx
35 https://developer.android.com/guide/components/activities/intro-activities

https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/app/Activity.java
https://developer.android.com/guide/components/fundamentals
https://www.geeksforgeeks.org/activity-state-changes-in-android-with-example/
https://www.includehelp.com/android/use-full-screen-activity-in-android-studio.aspx
https://developer.android.com/guide/components/activities/intro-activities

Back Stack
In case we start a new application\move to a new activity40 the previously visible activity is
moved to the “activity back stack”. Thus, we can say that the “activity back stack” holds a
collection of activities that have been suspended and can easily be resumed. Every
process\application has its own back stack. An activity can be removed from the back stack if
we close it, the user/application/OS calls the finish() function41 - as shown in the screenshot
below.

Overall, activities in the back stack are never rearranged. Hence, if our application allows the
creation of an activity from one of more activities, a new instance of the activity is created and
pushed to the stack42.

Lastly, by default when the user clicks the “back button” every instance of the activity is shown
in the order in which they were opened (unless they were closed\destroyed). Also, the activities
are shown with their UI state43.

43 https://guides.codepath.com/android/Navigation-and-Task-Stacks
42 https://developer.android.com/guide/components/activities/tasks-and-back-stack
41 https://joshuadonlan.gitbooks.io/onramp-android/content/intents/activity_stack.html
40 https://medium.com/@boutnaru/the-android-concept-journey-activity-74314ee42ce1

https://guides.codepath.com/android/Navigation-and-Task-Stacks
https://developer.android.com/guide/components/activities/tasks-and-back-stack
https://joshuadonlan.gitbooks.io/onramp-android/content/intents/activity_stack.html
https://medium.com/@boutnaru/the-android-concept-journey-activity-74314ee42ce1

Application Sandbox
Android isolates applications from each other. This is done by leveraging operating based user
management. Android assigns a unique UID44 for every Android application upon installation.
By doing so Android set up a kernel-level “Application Sandbox”45.

Moreover, every android application gets its own process (in conjunction with a different UID),
which provides a different memory address space46 - as shown in the diagram below. The
sandbox design has been part of Android since its creation. It leverages Linux kernel features
such as (but not limited to): memory isolation (DAC), file isolation, UIDs, GIDs and in newer
versions also namespaces47.

Lastly, when creating an android package (APK) we can define as part of the manifest we want
to share a UID with another similarly-signed APKs48.

​

48 https://source.android.com/docs/security/overview/app-security
47 https://2net.co.uk/slides/sandbox-csimmonds-droidcon-london-2023.pdf
46 https://stackoverflow.com/questions/31531633/what-is-a-application-sandwork-in-android-and-how-it-works
45 https://source.android.com/docs/security/features
44 https://medium.com/@boutnaru/the-linux-security-journey-uid-user-identifier-2f11bcf90ee8

https://source.android.com/docs/security/overview/app-security
https://2net.co.uk/slides/sandbox-csimmonds-droidcon-london-2023.pdf
https://stackoverflow.com/questions/31531633/what-is-a-application-sandwork-in-android-and-how-it-works
https://source.android.com/docs/security/features
https://medium.com/@boutnaru/the-linux-security-journey-uid-user-identifier-2f11bcf90ee8

Binder
Due to the application sandbox (which is a fundamental part of the Android architecture) every
application is its own process with a separate memory address space49. Hence, for passing
information between applications we have to leverage some kind of an IPC (Inter Process
Communication) mechanism50.

Overall, Android does not use any SysV IPC functionally which is part of Linux51. For that we
have Binder, which is an Android-specific interprocess communication mechanism, and remote
method invocation system - as shown in the diagram below52. Using the binder component one
Android process can call a routine in another Android process. Binder helps in identifying the
method to invoke and passing the arguments between processes53.

Lastly, the Binder framework used as part of the Android operating system is based on the
OpenBinder project. The kernel side of OpenBinder was merged into the Linux kernel mainline
as part of version 3.1954. Thus, we can also checkout this source code as part of the Linux
kernel55.

55 https://elixir.bootlin.com/linux/v6.14.1/source/drivers/android/binder.c
54 https://en.wikipedia.org/wiki/OpenBinder
53 https://elinux.org/Android_Binder
52 http://www.slideshare.net/magoroku15/android-binderipc
51 https://medium.com/@boutnaru/linux-namespaces-ipc-namespace-927f01cbcf3d
50 https://medium.com/@boutnaru/ipc-manager-inter-process-communication-manager-348930d08fa0
49 https://medium.com/@boutnaru/the-android-concept-journey-application-sandbox-c5cb80480fd3

https://elixir.bootlin.com/linux/v6.14.1/source/drivers/android/binder.c
https://en.wikipedia.org/wiki/OpenBinder
https://elinux.org/Android_Binder
http://www.slideshare.net/magoroku15/android-binderipc
https://medium.com/@boutnaru/linux-namespaces-ipc-namespace-927f01cbcf3d
https://medium.com/@boutnaru/ipc-manager-inter-process-communication-manager-348930d08fa0
https://medium.com/@boutnaru/the-android-concept-journey-application-sandbox-c5cb80480fd3

	
	Introduction
	AOSP (Android Open Source Project)
	
	OHA (Open Handset Alliance)
	
	Android Auto
	
	Android Automotive (AAOS)
	API Level (Application Programming Interface Level)
	
	Android Emulator
	AVD (Android Virtual Device)
	
	Activity
	Back Stack
	Application Sandbox
	Binder

